Diagnosis of Breast Cancer Tissues Using 785 nm Miniature Raman Spectrometer and Pattern Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Specimens
2.2. Raman Spectral Measurements
2.3. Spectra Preprocessing Method
2.4. Discrimination Analysis Method
- Step 1
- The original spectra are reconstructed based on the first principal components. Then, they are projected into the subspace with various interference factors but without the objective factors. The net spectra according to the following formulas were then calculated [22]. Each training sample consists of input features with known class label .
- Step 2
- Calculating the feature weight of the training sample, the formulas are as follows [23,24]:
- Step 3
- Calculating the weighted Euclidean distance metric between training samples and the test samples according to the following formula:
- Step 4
- In accordance with the Euclidean distance , we select nearest neighbors of class for the given query . Then, we construct the local hyperplane of class with as follows:
- Step 5
- Calculating the minimum distance between and according to the following formulas:
- Step 6
- Evaluating a class label to by the formula as follows:
3. Results and Discussion
3.1. Spectral Preprocessing
3.2. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carol, E.D.; Stacey, A.F.; Ann, G.S.; Joan, L.K.; Robert, A.S.; Ahmedin, J. Breast Cancer Statistics, 2015: Convergence of Incidence Rates Between Black and White Women. Cancer J. Clin. 2016, 66, 31–42. [Google Scholar]
- Wang, Y. High Morbidity of Breast Cancer and Gap of Ultrasound Examination Physician; China Business News: Shanghai, China, 18 October 2016; Available online: http://newspaper.hwebook.cn/detail.html?id=shdycjrb/dycjrb/20161018/7717a97b-418c-42d7–8eb2-b64b527fef16 (accessed on 28 October 2016).
- Li, Q.B.; Sun, X.J.; Xu, Y.Z.; Yang, L.M.; Zhang, Y.F.; Weng, S.F.; Shi, J.S.; Wu, J.G. Diagnosis of gastric inflammation and malignancy in endoscopic biopsies based on Fourier transform infrared spectroscopy. Clin. Chem. 2005, 51, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Alfano, R.R.; Tang, G.C.; Pradhan, A.; Lam, W.; Choy, D.; Opher, E. Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J. Quantum Electron. 1987, 23, 1806–1811. [Google Scholar] [CrossRef]
- Alfano, R.R.; Liu, C.H.; Sha, W.L.; Zhu, H.R.; Akins, D.L.; Cleary, J.; Prudente, R.; Clemer, E. Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci. 1991, 4, 23–28. [Google Scholar]
- Pu, Y.; Wang, W.B.; Yang, Y.L.; Alfano, R.R. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods. Appl. Opt. 2013, 52, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.K.; Zheng, W.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; Huang, Z. Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach. Br. J. Surg. 2010, 97, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Zhou, Y.; Sun, Y.; Li, J.Y.; Zhou, L.X.; Boydston-White, S.; Masilamani, V.; Zhu, K.; Pu, Y.; Alfano, R.R. Resonance Raman and Raman Spectroscopy for Breast Cancer Detection. Technol. Cancer Res. Treat. 2013, 12, 371–382. [Google Scholar] [CrossRef] [PubMed]
- García-Flores, A.F.; Raniero, L.; Canevari, R.A.; Jalkanen, K.J.; Bitar, R.A.; Martinho, H.S.; Martin, A.A. High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer. Theor. Chem. Acc. 2011, 130, 1231–1238. [Google Scholar]
- Yu, C.; Gestl, E.; Eckert, K.; Allara, D.; Irudayaraj, J. Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detect. Prev. 2006, 30, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Zoladek, A.; Pascut, F.C.; Patel, P.; Notingher, I. Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy. J. Ram. Spectrosc. 2011, 42, 251–258. [Google Scholar] [CrossRef]
- Haka, A.S.; Volynskaya, Z.; Gardecki, J.A.; Nazemi, J.; Lyons, J.; Hicks, D.; Fitzmaurice, M.; Dasari, R.R.; Crowe, J.P.; Feld, M.S. In Vivo Margin Assessment during Partial Mastectomy Breast Surgery Using Raman Spectroscopy. Cancer Res. 2006, 66, 3317–3322. [Google Scholar] [CrossRef] [PubMed]
- Haka, A.S.; Volynskaya, Z.; Gardecki, J.A.; Nazemi, J.; Shenk, R.; Wang, N.; Dasari, R.R.; Fitzmaurice, M.; Feld, M.S. Diagnosing breast cancer using Raman spectro scopy: Prospective analysis. J. Biomed. Opt. 2009, 14, 054023. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, M.V.P.; Kalyan Kumar, K.; Mathew, S.; Rao, L.; Krishna, C.M.; Kurien, J. Biochemical correlation of Raman spectra of normal, benign and malignant breast tissues: A spectral deconvolution study. Biopolymers 2009, 91, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Wang, W.B.; Alimova, A.; Sriramoju, V.; Kartazayev, V.; Alfano, R.R. Monitoring changes of proteins and lipids in laser welded aorta tissue using Raman spectroscopy and basis biochemical component analyses. Proc. SPIE Int. Soc. Opt. Eng. 2009, 7175, 345–348. [Google Scholar]
- Vargas-Obieta, E.; Martínez-Espinosa, J.C.; Martínez-Zerega, B.E.; Jave-Suárez, L.F.; Aguilar-Lemarroy, A.; González-Solís, J.L. Breast cancer detection based on serum sample surface enhanced Raman spectroscopy. Lasers Med. Sci. 2016, 31, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Z.Y.; Zong, S.F.; Song, C.Y.; Zhang, R.H.; Cui, Y.P. Distinguishing breast cancer cells using surface-enhanced Raman scatterin. Anal. Bioanal. Chem. 2012, 402, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Bitar, R.A.; Martinho, H.S.; Tierra-Criollo, C.J.; Zambelli, R.L.N.; Netto, M.; Martin, M.A.A. Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy. J. Biomed. Opt. 2006, 11, 054001. [Google Scholar] [CrossRef] [PubMed]
- Okun, O.G. K-local hyperplane distance nearest-neighbor algorithm and protein fold recognition. Pattern Recognit. Image Anal. 2006, 16, 19–22. [Google Scholar] [CrossRef]
- Vincent, P.; Bengio, Y. K-local hyperplane and convex distance nearest neighbor algorithms. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic NIPS 2001, Vancouver, BC, Canada, 3–8 December 2001; pp. 985–992.
- Hajian, R.; Mousavi, E.; Shams, N. Net analyte signal standard addition method for simultaneous determination of sulphadiazine and trimethoprim in bovine milk and veterinary medicines. Food Chem. 2013, 138, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.B.; Yu, C.; Zhang, Q.X. Research on Raman Spectra Quantitative Analysis Model of Ethanol Aqueous Solution Based on Net Analyte Signal. Spectrosc. Spectr. Anal. 2013, 33, 390–394. [Google Scholar]
- Li, Q.B.; Gao, Q.S.; Zhang, G.G. Classification for breast cancer diagnosis with Raman spectroscopy. Biomed. Opt. Express 2014, 5, 435–2445. [Google Scholar]
- Yang, T.; Vojislav, K.; Cao, L.B. Classification by ALH-Fast Algorithm. Tsinghua Sci. Technol. 2010, 15, 275–280. [Google Scholar] [CrossRef]
- Shafer-Peltier, K.E.; Haka, A.S.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Raman microspectroscopic model of human breast tissue: Implications for breast cancer diagnosis in vivo. J. Ram. Spectrosc. 2002, 33, 552–563. [Google Scholar] [CrossRef]
- Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Diagnosising breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 12371–12376. [Google Scholar] [CrossRef] [PubMed]
Peak Position (cm−1) | Major Assignment |
---|---|
1078 | C–C or C–O stretch (lipid) |
1278 | Amide III(C–N stretch) (protein) |
1305 | Amide III, α-helix, C–C str and C–H (protein) |
1447 | Scissoring mode of methylene (CH2) (lipid) |
1453 | CH2 deformation (protein) |
1653 | lipid |
1663 | Amide I(C=O stretch) (protein) |
1747/1750 | C=O stretch (lipid) |
Method | Sensitivity (%) | Specificity (%) | The Positive Predictive Value (%) | The Negative Predictive Value (%) | Accuracy (%) |
---|---|---|---|---|---|
SVM | 92.5 | 61.1 | 84.1 | 78.5 | 82.75 |
HKNN | 90.0 | 66.7 | 85.7 | 75.0 | 82.76 |
AWKH | 95.0 | 72.2 | 88.4 | 86.7 | 87.93 |
ANWKH | 99.2 | 79.7 | 91.6 | 97.9 | 93.10 |
Method | Sensitivity (%) | Specificity (%) | The Positive Predictive Value (%) | The Negative Predictive Value (%) | Accuracy (%) |
---|---|---|---|---|---|
SVM | 96.9 | 85.3 | 94.95 | 90.6 | 93.89 |
KNN | 97.9 | 97.1 | 99.0 | 94.3 | 97.71 |
AWKH | 99.0 | 97.1 | 99.0 | 97.1 | 98.47 |
ANWKH | 99.0 | 100 | 100 | 97.1 | 99.24 |
Method | Sensitivity (%) | Specificity (%) | The Positive Predictive Value (%) | The Negative Predictive Value (%) | Accuracy (%) |
---|---|---|---|---|---|
SVM | 95.1 | 71.9 | 90.4 | 82.6 | 92.53 |
KNN | 95.9 | 68.0 | 89.6 | 85.0 | 88.63 |
AWKH | 95.0 | 74.0 | 92.2 | 82.0 | 93.18 |
ANWKH | 97.1 | 82.4 | 94.1 | 89.8 | 94.83 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Hao, C.; Xu, Z. Diagnosis of Breast Cancer Tissues Using 785 nm Miniature Raman Spectrometer and Pattern Regression. Sensors 2017, 17, 627. https://doi.org/10.3390/s17030627
Li Q, Hao C, Xu Z. Diagnosis of Breast Cancer Tissues Using 785 nm Miniature Raman Spectrometer and Pattern Regression. Sensors. 2017; 17(3):627. https://doi.org/10.3390/s17030627
Chicago/Turabian StyleLi, Qingbo, Can Hao, and Zhi Xu. 2017. "Diagnosis of Breast Cancer Tissues Using 785 nm Miniature Raman Spectrometer and Pattern Regression" Sensors 17, no. 3: 627. https://doi.org/10.3390/s17030627
APA StyleLi, Q., Hao, C., & Xu, Z. (2017). Diagnosis of Breast Cancer Tissues Using 785 nm Miniature Raman Spectrometer and Pattern Regression. Sensors, 17(3), 627. https://doi.org/10.3390/s17030627