Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers
Abstract
:1. Introduction
2. Printing Processes
2.1. Screen Printing: A Short Overview
2.2. Inkjet Printing
2.3. Hybrid Technology
3. Examples of Low-Cost Printed Devices
3.1. All-Inkjet Printed Strain Sensors
3.2. A Low-Cost Accelerometer Developed by Inkjet Printing Technology
3.3. An All-InkJet Printed Bending Actuator with Embedded Sensing Feature and an Electromagnetic Driving Mechanism
3.4. A Low-Cost Snap-Through Buckling Inkjet Printed Device for Vibrational Energy Harvesting
4. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Wong, W.S.; Salleo, A. Flexible Electronics: Materials and Applications; Springer-Verlag: New York, NY, USA, 2010. [Google Scholar]
- Andò, B.; Baglio, S. Inkjet-Printed Sensors: A Useful Approach for low-cost, rapid prototyping. IEEE Instr. Meas. Mag. 2011, 14. [Google Scholar] [CrossRef]
- Kawahara, Y.; Hodges, S.; Cook, B.S.; Zhang, C.; Abowd, G.D. Instant Inkjet Circuits: Lab-based Inkjet Printing to Support Rapid Prototyping of UbiComp Devices. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’13), Zurich, Switzerland, 8–12 September 2013. [Google Scholar]
- Crowley, K.; Morrin, A.; Hernandez, A.; O’Malley, E.; Whitten, P.G.; Wallace, G.G.; Smyth, M.R.; Killard, A.J. Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 2008, 77, 710–717. [Google Scholar] [CrossRef]
- Unander, T.; Nilsson, H.E. Characterization of Printed Moisture Sensors in Packaging Surveillance Applications. IEEE Sens. J. 2009, 9, 922–928. [Google Scholar] [CrossRef]
- Lakhmi, R.; Debeda, H.; Dufour, I.; Lucat, C. Force Sensors Based on Screen-Printed Cantilevers. IEEE Sens. J. 2010, 10, 1133–1137. [Google Scholar] [CrossRef]
- Jacq, C.; Lüthi, B.; Maeder, T.; Lambercy, O.; Gassert, R.; Ryser, P. Thick-film multi-DOF force/torque sensor for wrist rehabilitation. Sens. Actuators A Phys. 2010, 162, 361–366. [Google Scholar] [CrossRef]
- Hon, K.K.B.; Li, L.; Hutchings, I.M. Direct writing technology—Advances and developments. CIRP Ann. Manuf. Technol. 2008, 57, 601–620. [Google Scholar] [CrossRef]
- Gong, N.-W.; Hodges, S.; Paradiso, J.A. Leveraging Conductive Inkjet Technology to Build a Scalable and Versatile Surface for Ubiquitous Sensing. In Proceedings of the 13th International Conference on Ubiquitous Computing (UbiComp ’11), Beijing, China, 17–21 September 2011; pp. 45–54. [Google Scholar]
- Srichan, C.; Saikrajang, T.; Lomas, T.; Jomphoak, A.; Maturos, T.; Phokaratkul, D.; Kerdcharoen, T.; Tuantranont, A. Inkjet printing PEDOT PSS using desktop inkjet printer. In Proceedings of the 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2009), Chonburi, Thailand, 6–9 May 2009. [Google Scholar]
- Liu, Y.; Cui, T.; Varahramyan, K. All-Polymer capacitor fabricated with inkjet printing technique. Solid State Electron. 2003, 47, 1543–1548. [Google Scholar] [CrossRef]
- Fuller, S.B.; Wilhelm, E.J.; Jacobson, J.M. Ink-jet Printed Nanoparticle Microelectromechanical Systems. J. Microelectromech. Syst. 2002, 11, 54–60. [Google Scholar] [CrossRef]
- Lang, U. Experimental Methods for Evaluating the Mechanical Properties of Thin Layers of Intrinsically Conductive Polymers. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2008. [Google Scholar]
- Dimatix printers. Available online: www.dimatix.com (accessed on 15 January 2017).
- Microdrop printers. Available online: www.microdrop.de (accessed on 15 January 2017).
- Eberhardt, W.; Keck, J.; Willeck, H.; Polzinger, B.; Kück, H. Drucken von mikro-und nanoskaligen Funktionsschichten auf Thermoplasten zur Erhöhung der Integration mikrosystemtechnischer Packages. In Proceedings of the GMM-Fachbericht-Mikro- Nano-Integration, Erfurt, Germany, 3 March–3 April 2010. [Google Scholar]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.-K.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-Like Sensors of Pressure and Strain Enabled by Transparent, Elastic Films of Carbon Nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Lee, G.Y.; Kim, T.; Kim, S.M.; Kim, H.N.; Ahn, S.H.; Suh, K.Y. A Flexible and Highly Sensitive Strain Gauge Sensor using Reversible Interlocking of Nanofibres. Nat. Mater. 2012, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Andò, B.; Baglio, S. All-inkjet printed strain sensors. IEEE Sens. J. 2013, 13, 4874–4879. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, W.S. A Flexible Accelerometer System for Human Pulse Monitoring. In MRS Proceedings; Cambridge University Press: Cambridge, UK, 2014; p. 1690. [Google Scholar]
- Andò, B.; Baglio, S.; Lombardo, C.O.; Marletta, V.; Pistorio, A. A low-cost accelerometer developed by Inkjet printing technology. IEEE Trans. Instrum. Meas. 2015, 65, 1242–1248. [Google Scholar] [CrossRef]
- Pabst, O.; Perelaer, J.; Beckert, E.; Schubert, U.S.; Eberhardt, R.; Tünnermann, A. All inkjet-printed piezoelectric polymer actuators: Characterization and Applications for Micropumps in Lab-on-a-chip Systems. Organ. Electron. 2013, 14, 3423–3429. [Google Scholar] [CrossRef]
- Andò, B.; Marletta, V. An All-InkJet Printed Bending Actuator with Embedded Sensing Feature and an Electromagnetic Driving Mechanism. Actuators 2016, 5, 21. [Google Scholar] [CrossRef]
- Bona, M.; Serpelloni, M.; Sardini, E.; Lombardo, C.O.; Andò, B. Telemetric Technique for Wireless Strain Measurement From an Inkjet-Printed Resistive Sensor. IEEE Trans. Instrum. Meas. 2016, 66, 583–591. [Google Scholar] [CrossRef]
- Kumar, M.R.; Harika, K.; Rao, Y.S. Review on flexible Carbon Nanotube Based Strain Gage Sensors for biomedical applications. Int. J. Instrum. Electr. Electron. Eng. 2013, 1, 3. [Google Scholar]
- Rieu, M.; Camara, M.; Tournier, G.; Viricelle, J.-P.; Pijolat, C.; de Rooij, N.F.; Briand, D. Fully inkjet printed SnO2 gas sensor on plastic sub-strate. Sens. Actuators B Chem. 2016, 236, 1091–1097. [Google Scholar] [CrossRef]
- Ryu, D.; Meyers, F.N.; Loh, K.J. Inkjet-printed, flexible, and photoactive thin film strain sensors. J. Intell. Mater. Syst. Struct. 2015, 26, 1699–1710. [Google Scholar] [CrossRef]
- Vuorinen, T.; Niittynen, J.; Kankkunen, T.; Kraft, T.M.; Mäntysalo, M. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate. Sci. Rep. 2016, 6, 35289. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Cook, B.S.; Cooper, J.R.; Tentzeris, M.M. Low-cost flexible all-inkjet-printed microfluidic sensor. In Proceedings of the 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Gyeongju, Korea, 25–29 October 2015; pp. 1448–1450. [Google Scholar]
- Da Costa, T.H.; Song, E.; Tortorich, R.P.; Choi, J.-W. A Paper-Based Electrochemical Sensor Using Inkjet-Printed Carbon Nanotube Electrodes. ECS J. Solid State Sci. Technol. 2015, 4, S3044–S3047. [Google Scholar] [CrossRef]
- Quddious, A.; Yang, S.; Khan, M.M.; Tahir, F.A; Shamim, A.; Salama, K.N.; Cheema, H.M. Disposable, Paper-Based, Inkjet-Printed Humidityand H2S Gas Sensor for Passive Sensing Applications. Sensors 2016, 16, 2073. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, J.A.; Lifton, J.; Broxton, M. Sensate Media—Multimodal Electronic Skins as Dense Sensor Networks. BT Technol. J. 2004, 22, 32–44. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Xin, Z.; Deng, M.; Wen, Y.; Song, Y. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 2011, 22, 425601. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Shen, W.; Xu, Q.; Tan, R.; Song, W. Room-temperature sintering of conductive Ag films on paper. Mater. Lett. 2014, 123, 124–127. [Google Scholar] [CrossRef]
- Huang, Q.; Shen, W.; Xu, Q.; Tan, R.; Song, W. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Mater. Chem. Phys. 2014, 147, 550–556. [Google Scholar] [CrossRef]
- Matsuda, Y.; Shibayama, S.; Uete, K.; Yamaguchi, H.; Niimi, T. Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices. Anal. Chem. 2015, 87, 5762–5765. [Google Scholar] [CrossRef] [PubMed]
- Lessing, J.; Glavan, A.; Walker, S.B.; Keplinger, C.; Lewis, J.A.; Whitesides, G.M. Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “RF Paper” for Paper-Based Electronics and MEMS. Adv. Mater. 2014, 26, 4677–4682. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Cui, T.H.; Liu, Y.; Varahramyan, K. All-polymer RC filter circuits fabricated with inkjet printing technology. Solid State Electron. 2003, 47, 841–847. [Google Scholar] [CrossRef]
- Qiao, A.D.; Pang, G.K.H.; Mui, M.-K.; Lam, D.C.C. A Single-Axis Low-Cost Accelerometer Fabricated Using Printed-Circuit-Board Techniques. IEEE Electron. Device Lett. 2009, 30, 1293–1295. [Google Scholar] [CrossRef]
- Luque, B.A.; Flores, G.; Perdigones, F.; Medina, D.; Garcia, J.; Quero, J.M. Single axis accelerometer fabricated using printed circuit board techniques and laser ablation. Sens. Actuators A Phys. 2013, 192, 119–123. [Google Scholar] [CrossRef]
- Andò, C.B.; Baglio, S.; Bulsara, A.R.; Marletta, V.; Ferrari, V.; Ferrari, M. A Low-Cost Snap-Through Buckling Inkjet Printed Device for Vibrational Energy Harvesting. IEEE Sens. J. 2015, 15, 3209–3220. [Google Scholar] [CrossRef]
Technology | Advantages | Drawbacks |
---|---|---|
Screen printing |
|
|
Low-cost inkjet piezoelectric printers |
|
|
Professional inkjet systems |
|
|
Mixedscreen printing & low-cost Inkjet printing |
|
|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andò, B.; Baglio, S.; Bulsara, A.R.; Emery, T.; Marletta, V.; Pistorio, A. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers. Sensors 2017, 17, 748. https://doi.org/10.3390/s17040748
Andò B, Baglio S, Bulsara AR, Emery T, Marletta V, Pistorio A. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers. Sensors. 2017; 17(4):748. https://doi.org/10.3390/s17040748
Chicago/Turabian StyleAndò, Bruno, Salvatore Baglio, Adi R. Bulsara, Teresa Emery, Vincenzo Marletta, and Antonio Pistorio. 2017. "Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers" Sensors 17, no. 4: 748. https://doi.org/10.3390/s17040748
APA StyleAndò, B., Baglio, S., Bulsara, A. R., Emery, T., Marletta, V., & Pistorio, A. (2017). Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers. Sensors, 17(4), 748. https://doi.org/10.3390/s17040748