SAW Sensors for Chemical Vapors and Gases
Abstract
:1. Introduction
2. Fundamental Concepts
2.1. Rayleigh Waves
2.2. Piezoelectric Materials
2.3. Interdigital Transducers
2.4. Working Principle
2.5. Interacting Factors
- (i)
- (ii)
- Changes in propagation velocity or attenuation by the acoustoelectric effect: The surface wave is associated with an electric field protruding from the surface. Overlayers alter the stored energy in the electric field. The change in stored energy changes the electric properties (conductivity, permittivity etc.) and hence the propagation velocity. The wave is attenuated if the overlayer is of finite conductivity (i.e., resistive films) causing a net dissipation of energy [52,76,77,78,79].
- (iii)
- Variation in propagation velocity by viscoelasticity: The viscoelastic properties (elasticity, viscosity) of the ovarlayer can be influenced by absorption of molecular species thereby causing a strain in it. This strain is partly transferred to the substrate and thus affects the wave propagation [80,81,82,83,84,85].
3. Sensor Characteristics
4. Advances in SAW-Based Chemical Sensing
4.1. Sensing Layer Considerations
4.2. Controlling the Interfering Factors
4.3. Applications
4.3.1. SAW Sensors for Harsh Environment
4.3.2. SAW Sensor Array
5. Summary and Outlook
Acknowledgments
Conflicts of Interest
References
- Wohltjen, H.; Dessy, R. Surface Acoustic-Wave Probe for Chemical-Analysis. 1. Introduction and Instrument Description. Anal. Chem. 1979, 51, 1458–1464. [Google Scholar] [CrossRef]
- Wohltjen, H.; Dessy, R. Surface Acoustic-Wave Probes for Chemical-Analysis. 2. Gas-Chromatography Detector. Anal. Chem. 1979, 51, 1465–1470. [Google Scholar] [CrossRef]
- Khlebarov, Z.P.; Stoyanova, A.I.; Topalova, D.I. Surface acoustic wave gas sensors. Sens. Actuators B Chem. 1992, 8, 33–40. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Cai, H.; Mohammad Ali, M.; Tian, X.; Tao, L.; Yang, Y.; Ren, T. Surface acoustic wave devices for sensor applications. J. Semicond. 2016, 37, 021001. [Google Scholar] [CrossRef]
- Buff, W. SAW Sensors for Direct and Remote Measurement. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; Volume 1, pp. 435–443. [Google Scholar]
- Awang, Z. Gas sensors: A review. Sens. Transducers 2014, 168, 61–75. [Google Scholar]
- Afzal, A.; Dickert, F.L. Surface acoustic wave sensors for chemical applications. Chem. Sens. Compr. Sens. Technol. 2011, 3, 447–484. [Google Scholar]
- Caliendo, C.; Verardi, P.; Verona, E.; Amico, A.D.; Natale, C.D.; Saggio, G.; Serafini, M.; Paolesse, R.; Huq, S.E. Advances in SAW-based gas sensors. Smart Mater. Struct. 1997, 6, 689. [Google Scholar] [CrossRef]
- Caliendo, C.; Verona, E.; Anisimkin, V.I. Surface acoustic wave humidity sensors: A comparison between different types of sensitive membrane. Smart Mater. Struct. 1997, 6, 707. [Google Scholar] [CrossRef]
- White, R. Surface Acoustic Wave Sensors. In Proceedings of the IEEE Ultrasonics Symposium, San Francisco, CA, USA, 16–18 October 1985; pp. 490–494. [Google Scholar]
- Showko, S.; Jun, K. Surface Acoustic Wave Sensors. Jpn. J. Appl. Phys. 2004, 43, 2799. [Google Scholar]
- Vellekoop, M.J. Acoustic wave sensors and their technology. Ultrasonics 1998, 36, 7–14. [Google Scholar] [CrossRef]
- Jakubik, W.P. Surface acoustic wave-based gas sensors. Thin Solid Films 2011, 520, 986–993. [Google Scholar] [CrossRef]
- Moussa, H.; Andrew, C.; Wojtek, W. Acoustic wave sensors: Design, sensing mechanisms and applications. Smart Mater. Struct. 1997, 6, 647. [Google Scholar]
- Priya, R.B.; Venkatesan, T.; Pandiyarajan, G.; Pandya, H.M. A short review of saw sensors. J. Environ. Nanotechnol. 2015, 4, 15–22. [Google Scholar]
- Afzal, A.; Iqbal, N.; Mujahid, A.; Schirhagl, R. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Anal. Chim. Acta 2013, 787, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, D.S., Jr.; Martin, S.J.; Ricco, A.J.; Frye, G.C.; Wohltjen, H.; White, R.M.; Zellers, E.T. Chapter 5—Chemical and Biological Sensors. In Acoustic Wave Sensors; Academic Press: Burlington, VT, USA, 1997; pp. 222–330. [Google Scholar]
- Arn, D.; Amati, D.; Blom, N.; Ehrat, M.; Widmer, H.M. Surface acoustic wave gas sensors: Developments in the chemical industry. Sens. Actuators B Chem. 1992, 8, 27–31. [Google Scholar] [CrossRef]
- Cheeke, J.D.N.; Wang, Z. Acoustic wave gas sensors. Sens. Actuators B Chem. 1999, 59, 146–153. [Google Scholar] [CrossRef]
- Gronewold, T.M.A. Surface acoustic wave sensors in the bioanalytical field: Recent trends and challenges. Anal. Chim. Acta 2007, 603, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Rapp, B.E.; Rapp, M. Surface acoustic wave biosensors: A review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.G.; Alder, J.F. Surface acoustic wave sensors for atmospheric gas monitoring. A review. Analyst 1989, 114, 997–1004. [Google Scholar] [CrossRef]
- Dorozhkin, L.M.; Rozanov, I.A. Acoustic wave chemical sensors for gases. J. Anal. Chem. 2001, 56, 399–416. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.-I.; March-Iborra, C.; Montoya-Baides, Á.; Arnau-Vives, A. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors (Basel, Switzerland) 2009, 9, 5740–5769. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, G.S.; Wohltjen, H.; Roy, M.K. A Study of SAW Delay Line Behavior in Liquids. In Proceedings of the IEEE 1986 Ultrasonics Symposium, Williamsburg, VA, USA, 17–19 November 1986. [Google Scholar]
- Calabrese, G.S.; Wohltjen, H.; Roy, M.K. Surface Acoustic-Wave Devices as Chemical Sensors in Liquids—Evidence Disputing the Importance of Rayleigh-Wave Propagation. Anal. Chem. 1987, 59, 833–837. [Google Scholar] [CrossRef]
- Drafts, B. Acoustic wave technology sensors. IEEE Trans. Microw. Theory Techniques 2001, 49, 795–802. [Google Scholar] [CrossRef]
- Bryant, A.; Lee, D.L.; Vetelino, J.F. A Surface Acoustic Wave Gas Detector. In Proceedings of the 1981 Ultrasonics Symposium, Chicago, IL, USA, 14–16 October 1981; pp. 171–174. [Google Scholar]
- Greve, D.; Chin, T.-L.; Zheng, P.; Ohodnicki, P.; Baltrus, J.; Oppenheim, I. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing. Sensors 2013, 13, 6910–6935. [Google Scholar] [CrossRef] [PubMed]
- Wohltjen, H. Mechanism of Operation and Design Considerations for Surface Acoustic-Wave Device Vapor Sensors. Sens. Actuator 1984, 5, 307–325. [Google Scholar] [CrossRef]
- Falconer, R.S. A versatile SAW-based sensor system for investigating gas-sensitive coatings. Sens. Actuators B Chem. 1995, 24, 54–57. [Google Scholar] [CrossRef]
- Wang, W.; Lim, C.; Lee, K.; Yang, S. Wireless surface acoustic wave chemical sensor for simultaneous measurement of CO2 and humidity. J. Micro/Nanolith. MEMS MOEMS 2009, 8, 031306. [Google Scholar]
- Ricco, A.J.; Martin, S.J. Thin Metal-Film Characterization and Chemical Sensors—Monitoring Electronic Conductivity, Mass Loading and Mechanical-Properties with Surface Acoustic-Wave Devices. Thin Solid Films 1991, 206, 94–101. [Google Scholar] [CrossRef]
- Lewis, M.F. Rayleigh waves-a progress report. Eur. J. Phys. 1995, 16, 1. [Google Scholar] [CrossRef]
- Strutt, J.W. On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 1885, 17, 4. [Google Scholar]
- Stoneley, R. The Propagation of Surface Elastic Waves in a Cubic Crystal. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 232, 447–458. [Google Scholar] [CrossRef]
- White, R.M.; Voltmer, F.W. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 1965, 7, 314–316. [Google Scholar] [CrossRef]
- Sherrit, S.; Bao, X.; Bar-Cohen, Y.; Chang, Z. BAW and SAW Sensors for In Situ Analysis. In Proceedings of the International Society for Optics and Photonics Smart Structures and Materials, San Diego, CA, USA, 2–6 March 2003; pp. 81–91. [Google Scholar]
- Voinova, M.V. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review. J. Sens. 2009, 2009, 13. [Google Scholar] [CrossRef]
- Manbachi, A.; Cobbold, R.S.C. Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection. Ultrasound 2011, 19, 187–196. [Google Scholar] [CrossRef]
- Curie, P.; Curie, J. Développement par pression de l’électricité polaire dans les hémièdres à faces inclinées. Comptes Rendus de l’Académie des Sci. 1880, 91, 294–295. (In French) [Google Scholar]
- Slobodnik, A.J. Surface acoustic waves and SAW materials. Proc. IEEE 1976, 64, 581–595. [Google Scholar] [CrossRef]
- Campbell, C.K. Applications of surface acoustic and shallow bulk acoustic wave devices. Proc. IEEE 1989, 77, 1453–1484. [Google Scholar] [CrossRef]
- Naumenko, N.; Solie, L. Optimal cuts of langasite, La3Ga5SiO14 for SAW devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Biryukov, S.V.; Schmidt, H.; Weihnacht, M. Gyroscopic Effect for SAW in Common Piezoelectric Crystals. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 2133–2136. [Google Scholar]
- Sankaranarayanan, S.; Bhethanabotla, V.R.; Joseph, B. Modeling of Surface Acoustic Wave Sensor Response. In Sensors for Chemical and Biological Applications; Ram, M.K., Bhethanabotla, V.R, Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 97–132. [Google Scholar]
- Ben Salah, I.; Ben Ghozlen, M.H. Rayleigh waves in piezoelectric material. Phys. Procedia 2009, 2, 1377–1383. [Google Scholar] [CrossRef]
- Jiang, X.; Kim, K.; Zhang, S.; Johnson, J.; Salazar, G. High-Temperature Piezoelectric Sensing. Sensors 2014, 14, 144–169. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Peng, B.; Li, C.; Gong, D.; Yang, Z.; Liu, X.; Zhang, W. The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures. Sensors 2016, 16, 526. [Google Scholar] [CrossRef] [PubMed]
- Preethichandra, D.M.G.; Kaneto, K. SAW Sensor Network Fabricated on a Polyvinylidine Difluoride (PVDF) Substrate for Dynamic Surface Profile Sensing. IEEE Sens. J. 2007, 7, 646–649. [Google Scholar] [CrossRef]
- Shih, W.-C.; Wang, M.-J.; Nan Lin, I. Characteristics of ZnO thin film surface acoustic wave devices fabricated using nanocrystalline diamond film on silicon substrates. Diam. Relat. Mater. 2008, 17, 390–395. [Google Scholar] [CrossRef]
- Ricco, A.J.; Martin, S.J.; Zipperian, T.E. Surface Acoustic-Wave Gas Sensor Based on Film Conductivity Changes. Sens. Actuator 1985, 8, 319–333. [Google Scholar] [CrossRef]
- Ohsato, H.; Iwatak, T.; Morikoshi, H. Mechanism of piezoelectricity for langasite based on the framework crystal structure. Trans. Electr. Electron. Mater. 2012, 13, 51–59. [Google Scholar] [CrossRef]
- Yamanouchi, K.; Takeuchi, M. Applications for Piezoelectric Leaky Surface Waves. IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 4–7 December 1990; Volume 1, pp. 11–18. [Google Scholar]
- Caliendo, C. Analysis of the acoustoelectric behavior of microwave frequency, temperature-compensated AlN-based multilayer coupling configurations. J. Appl. Phys. 2008, 104, 104509. [Google Scholar] [CrossRef]
- Rodriguez Madrid, J. Ultra high frequency thin film saw devices. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2013. [Google Scholar]
- Xu, F.-Q.; Wang, W.; Xue, X.-F.; Hu, H.-L.; Liu, X.-L.; Pan, Y. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection. Sensors 2015, 15, 30187–30198. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.C.; Thompson, M. Interdigital capacitance and surface acoustic wave sensors. Anal. Chem. 1993, 65, 352–362. [Google Scholar] [CrossRef]
- Fischerauer, G.; Dickert, F.; Forth, P.; Knauer, U. Chemical Sensors Based on SAW Resonators Working at up to 1 GHz. In Proceedings of the 1996 IEEE Ultrasonics Symposium, San Antonio, TX, USA, 3–6 November 1996; Volume 1, pp. 439–442. [Google Scholar]
- Chin, T.L.; Zheng, P.; Greve, D.W.; Cao, L.; Oppenheim, I.J. Flexible Instrumentation for Wireless SAW. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 261–264. [Google Scholar]
- Zheng, P.; Chin, T.L.; Greve, D.W.; Oppenheim, I.J.; Cao, L. Pulse-Mode Temperature Sensing with Langasite SAW Devices. In Proceedings of the 2010 IEEE International Frequency Control Symposium, Newport Beach, CA, USA, 1–4 June 2010; pp. 297–300. [Google Scholar]
- Yunusa, Z.; Hamidon, M.; Ismail, A.; Isa, M.; Yaacob, M.; Rahmanian, S.; Ibrahim, S.; Shabaneh, A. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature. Sensors 2015, 15, 4749–4765. [Google Scholar] [CrossRef] [PubMed]
- Hea-Min, L.; Deuk-Young, H.; Hyungkeun, A. Design and Fabrication of SAW Gas Sensor with Resonator Structure. In Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, Seoul, Korea, 25–30 May 1997; Volume 2, pp. 1058–1061. [Google Scholar]
- Ballantine, D.S., Jr; Martin, S.J.; Ricco, A.J.; Frye, G.C.; Wohltjen, H.; White, R.M.; Zellers, E.T. Chapter 6—Practical Aspects of Acoustic-Wave Sensors. In Acoustic Wave Sensors; Academic Press: Burlington, VT, USA, 1997; pp. 331–395. [Google Scholar]
- Wang, W.; He, S.; Li, S.; Pan, Y. High frequency stability oscillator for surface acoustic wave-based gas sensor. Smart Mater. Struct. 2006, 15, 1525. [Google Scholar] [CrossRef]
- Nimal, A.T.; Mittal, U.; Singh, M.; Khaneja, M.; Kannan, G.K.; Kapoor, J.C.; Dubey, V.; Gutch, P.K.; Lal, G.; Vyas, K.D.; et al. Development of handheld SAW vapor sensors for explosives and CW agents. Sens. Actuators B Chem. 2009, 135, 399–410. [Google Scholar] [CrossRef]
- Wen, W.; Keekeun, L.; Taehyun, K.; Ikmo, P.; Sangsik, Y. A novel wireless, passive CO2 sensor incorporating a surface acoustic wave reflective delay line. Smart Mater. Struct. 2007, 16, 1382. [Google Scholar]
- Auld, B.A. Acoustic Fields and Waves in Solids; Wiley-Interscience: New York, NY, USA, 1973; Volume 2. [Google Scholar]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Ballantine, D.S., Jr.; Martin, S.J.; Ricco, A.J.; Frye, G.C.; Wohltjen, H.; White, R.M.; Zellers, E.T. Chapter 2—Fundamentals of Acoustic Waves. In Acoustic Wave Sensors; Academic Press: Burlington, VT, USA, 1997; pp. 10–35. [Google Scholar]
- Snow, A.; Wohltjen, H. Poly(Ethylene Maleate) Cyclopentadiene—A Model Reactive Polymer Vapor System for Evaluation of a Saw Microsensor. Anal. Chem. 1984, 56, 1411–1416. [Google Scholar] [CrossRef]
- Venema, A.; Nieuwkoop, E.; Vellekoop, M.J.; Nieuwenhuizen, M.S.; Barendsz, A.W. Design aspects of saw gas sensors. Sens. Actuators 1986, 10, 47–64. [Google Scholar] [CrossRef]
- Wohltjen, H.; Nelson, D.; Dessy, R.E. Chemical Sensors and Robotics. J. Electrochem. Soc. 1984, 131, C327. [Google Scholar]
- Ali, Z. Acoustic wave mass sensors. J. Therm. Anal. Calorim. 1999, 55, 397–412. [Google Scholar] [CrossRef]
- Ali, Z.; Pavey, K.; Robens, E. Survey on mass determination with oscillating systems—Part III. Acoustic wave mass sensors for chemical and biological sensing. J. Therm. Anal. Calorim. 2003, 71, 31–35. [Google Scholar] [CrossRef]
- Penza, M.; Antolini, F.; Antisari, M.V. Carbon nanotubes as SAW chemical sensors materials. Sens. Actuators B Chem. 2004, 100, 47–59. [Google Scholar] [CrossRef]
- Xu, S.; Li, C.; Li, H.; Li, M.; Qu, C.; Yang, B. Carbon dioxide sensors based on a surface acoustic wave device with a graphene-nickel-l-alanine multilayer film. J. Mater. Chem. C 2015, 3, 3882–3890. [Google Scholar] [CrossRef]
- Tasaltin, C.; Ebeoglu, M.A.; Ozturk, Z.Z. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film. Sensors 2012, 12, 12006–12015. [Google Scholar] [CrossRef]
- Hejczyk, T.; Urbanczyk, M.; Jakubik, W. Semiconductor sensor layer in SAW gas sensors configuration. Acta Phys. Polonica-Ser. A General Phys. 2010, 118, 1153. [Google Scholar] [CrossRef]
- Anisimkin, V.I.; Kotelyanskii, I.M.; Verardi, P.; Verona, E. Elastic properties of thin-film palladium for surface acoustic wave (SAW) sensors. Sens. Actuators B Chem. 1995, 23, 203–208. [Google Scholar] [CrossRef]
- Grate, J.W.; Klusty, M.; Mcgill, R.A.; Abraham, M.H.; Whiting, G.; Andonianhaftvan, J. The Predominant Role of Swelling-Induced Modulus Changes of the Sorbent Phase in Determining the Responses of Polymer-Coated Surface Acoustic-Wave Vapor Sensors. Anal. Chem. 1992, 64, 610–624. [Google Scholar] [CrossRef]
- Cheeke, J.D.N.; Tashtoush, N.; Eddy, N. Surface Acoustic Wave Humidity Sensor Based on the Changes in the Viscoelastic Properties of a Polymer Film. In Proceedings of the 1996 IEEE Ultrasonics Symposium, San Antonio, TX, USA, 3–6 November 1996; Volume 1, pp. 449–452. [Google Scholar]
- Shen, C.-Y.; Liou, S.-Y. Surface acoustic wave gas monitor for ppm ammonia detection. Sens. Actuators B Chem. 2008, 131, 673–679. [Google Scholar] [CrossRef]
- Bhasker Raj, V.; Nimal, A.T.; Parmar, Y.; Sharma, M.U.; Gupta, V. Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor. Sens. Actuators B Chem. 2012, 166–167, 576–585. [Google Scholar] [CrossRef]
- Martin, S.J.; Frye, G.C.; Senturia, S.D. Dynamics and Response of Polymer-Coated Surface-Acoustic-Wave Devices—Effect of Viscoelastic Properties and Film Resonance. Anal. Chem. 1994, 66, 2201–2219. [Google Scholar] [CrossRef]
- Muller, R.S.; Fertsch, M.T.; White, R.M. WP-B1 surface-acoustic-wave vapor-sensing device. IEEE Trans. Electron Devices 1980, 27, 2200–2201. [Google Scholar] [CrossRef]
- Van Hieu, N.; Thuy, L.T.B.; Chien, N.D. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens. Actuators B Chem. 2008, 129, 888–895. [Google Scholar] [CrossRef]
- Lec, R.; Vetelino, J.F.; Falconer, R.S.; Xu, A. Macroscopic Theory of Surface Acoustic Wave Gas Microsensors. In Proceedings of the IEEE Ultrasonics Symposium, Chicago, IL, USA, 2–5 October 1988; Volume 1, pp. 585–589. [Google Scholar]
- Fisher, B.H.; Malocha, D.C. Study of the acoustoelectric effect for SAW sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Hietala, S.L.; Hietala, V.M.; Brinker, C.J. Dual SAW sensor technique for determining mass and modulus changes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.; Poirier, M.; Riley, G.; Lee, D.L.; Vetelino, J.F. Gas detection using surface acoustic wave delay lines. Sens. Actuator 1983, 4, 105–111. [Google Scholar] [CrossRef]
- Mujahid, A.; Dickert, F.L. SAW and Functional Polymers. In Gas Sensing Fundamentals; Kohl, C.-D., Wagner, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 213–245. [Google Scholar]
- Dickert, F.L.; Forth, P.; Bulst, W.-E.; Fischerauer, G.; Knauer, U. SAW devices-sensitivity enhancement in going from 80 MHz to 1 GHz. Sens. Actuators B Chem. 1998, 46, 120–125. [Google Scholar] [CrossRef]
- Luo, W.; Fu, Q.; Zhou, D.; Deng, J.; Liu, H.; Yan, G. A surface acoustic wave H2S gas sensor employing nanocrystalline SnO2 thin film. Sens. Actuators B Chem. 2013, 176, 746–752. [Google Scholar] [CrossRef]
- Matatagui, D.; Martí, J.; Fernández, M.J.; Fontecha, J.L.; Gutiérrez, J.; Gràcia, I.; Cané, C.; Horrillo, M.C. Chemical warfare agents simulants detection with an optimized SAW sensor array. Sens. Actuators B Chem. 2011, 154, 199–205. [Google Scholar] [CrossRef]
- Hamidon, M.N.; Yunusa, Z. Sensing Materials for Surface Acoustic Wave Chemical Sensors. In Progresses in Chemical Sensor; Wang, W., Ed.; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Raj, V.B.; Singh, H.; Nimal, A.T.; Tomar, M.; Sharma, M.U.; Gupta, V. Effect of metal oxide sensing layers on the distinct detection of ammonia using surface acoustic wave (SAW) sensors. Sens. Actuators B Chem. 2013, 187, 563–573. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635. [Google Scholar] [CrossRef] [PubMed]
- Sayago, I.; Fernández, M.J.; Fontecha, J.L.; Horrillo, M.C.; Terrado, E.; Seral-Ascaso, A.; Muñoz, E. Carbon Nanotube-Based SAW Sensors. In Proceedings of the 2013 Spanish Conference on Electron Devices, Valladolid, Spain, 12–14 February 2013; pp. 127–130. [Google Scholar]
- Asad, M.; Sheikhi, M.H. Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles. Sens. Actuators B Chem. 2014, 198, 134–141. [Google Scholar] [CrossRef]
- Sayago, I.; Fernández, M.J.; Fontecha, J.L.; Horrillo, M.C.; Vera, C.; Obieta, I.; Bustero, I. New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Procedia Eng. 2011, 25, 256–259. [Google Scholar] [CrossRef]
- Sil, D.; Hines, J.; Udeoyo, U.; Borguet, E. Palladium Nanoparticle-Based Surface Acoustic Wave Hydrogen Sensor. ACS Appl. Mater. Interfaces 2015, 7, 5709–5714. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Palma, A.; Verona, E. Palladium-surface acoustic wave interaction for hydrogen detection. Appl. Phys. Lett. 1982, 41, 300–301. [Google Scholar] [CrossRef]
- Sadek, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 2006, 17, 4488. [Google Scholar] [CrossRef]
- Wang, S.-H.; Shen, C.-Y.; Su, J.-M.; Chang, S.-W. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite. Sensors 2015, 15, 7084–7095. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Stavila, V.; Zeitler, T.R.; White, M.I.; Thornberg, S.M.; Greathouse, J.A.; Allendorf, M.D. Ultrasensitive Humidity Detection Using Metal–Organic Framework-Coated Microsensors. Anal. Chem. 2012, 84, 7043–7051. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, D.S., Jr.; White, R.M.; Martin, S.J.; Ricco, A.J.; Frye, G.C.; Zellars, E.T.; Wohltjen, H. Acoustic Wave Sensors—Theory, Design, and Physico-Chemical Applications, 1st ed.; Academic Press-Elsevier: Burlington, ON, Canada, 1997. [Google Scholar]
- McGill, R.A.; Chung, R.; Chrisey, D.B.; Dorsey, P.C.; Matthews, P.; Pique, A.; Mlsna, T.E.; Stepnowski, J.L. Performance optimization of surface acoustic wave chemical sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1370–1380. [Google Scholar] [CrossRef]
- Joo, B.-S.; Huh, J.-S.; Lee, D.-D. Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sens. Actuators B Chem. 2007, 121, 47–53. [Google Scholar] [CrossRef]
- Wen, W.; Shitang, H.; Shunzhou, L.; Minghua, L.; Yong, P. Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sens. Actuators B Chem. 2007, 125, 422–427. [Google Scholar] [CrossRef]
- Thomas, S.; Cole, M.; De Luca, A.; Torrisi, F.; Ferrari, A.C.; Udrea, F.; Gardner, J.W. Graphene-coated Rayleigh SAW Resonators for NO2 Detection. Procedia Eng. 2014, 87, 999–1002. [Google Scholar] [CrossRef]
- Ippolito, S.J.; Kandasamy, S.; Kalantar-Zadeh, K.; Wlodarski, W. Layered SAW hydrogen sensor with modified tungsten trioxide selective layer. Sens. Actuators B Chem. 2005, 108, 553–557. [Google Scholar] [CrossRef]
- Giffney, T.J.; Ng, Y.H.; Aw, K.C. A Surface Acoustic Wave Ethanol Sensor with Zinc Oxide Nanorods. Smart Mater. Res. 2012, 2012, 1–4. [Google Scholar] [CrossRef]
- Lei, S.; Chen, D.; Chen, Y. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films. Nanotechnology 2011, 22, 265504. [Google Scholar]
- He, X.; Arsat, R.; Sadek, A.Z.; Wlodarski, W.; Kalantar-zadeh, K.; Li, J. Electrospun PVP fibers and gas sensing properties of PVP/36° YX LiTaO3 SAW device. Sens. Actuators B Chem. 2010, 145, 674–679. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Nagarajan, R.; Kumar, J.; Gu, Z.; Cho, J.; Kurup, P. Dynamic chemical vapor sensing with nanofibrous film based surface acoustic wave sensors. Sens. Actuators A Phys. 2011, 167, 8–13. [Google Scholar] [CrossRef]
- Thomas, R.C.; Sun, L.; Crooks, R.M.; Ricco, A.J. Real-Time Measurements of the Gas-Phase Adsorption of Normal-Alkylthiol Monolayers and Multilayers on Gold. Langmuir 1991, 7, 620–622. [Google Scholar] [CrossRef]
- Jakubik, W.P.; Urbańczyk, M.W.; Kochowski, S.; Bodzenta, J. Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sens. Actuators B Chem. 2002, 82, 265–271. [Google Scholar] [CrossRef]
- Jakubik, W.P. Investigations of thin film structures of WO3 and WO3 with Pd for hydrogen detection in a surface acoustic wave sensor system. Thin Solid Films 2007, 515, 8345–8350. [Google Scholar] [CrossRef]
- Pestov, D.; Guney-Altay, O.; Levit, N.; Tepper, G. Improving the stability of surface acoustic wave (SAW) chemical sensor coatings using photopolymerization. Sens. Actuators B Chem. 2007, 126, 557–561. [Google Scholar] [CrossRef]
- Buff, W. SAW sensors. Sens. Actuators A Phys. 1992, 30, 117–121. [Google Scholar] [CrossRef]
- Cobianu, C.; Serban, B.; Georgescu, I.; Costea, S.; Bostan, C. A novel concept for low drift chemical sensing at micro and nano-scale. In Proceedings of the 2010 International IEEE Semiconductor Conference (CAS), Sinaia, Romania, 11–13 October 2010. [Google Scholar]
- Wang, W.; Lee, K.; Woo, I.; Park, I.; Yang, S. Optimal design on SAW sensor for wireless pressure measurement based on reflective delay line. Sens. Actuators A Phys. 2007, 139, 2–6. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; Li, S.; Liu, M.; Pan, Y. Advances in SXFA-coated SAW chemical sensors for organophosphorous compound detection. Sensors 2011, 11, 1526–1541. [Google Scholar] [CrossRef] [PubMed]
- Rebière, D.; Duchamp, G.; Pistré, J.; Hoummady, M.; Hauden, D.; Planade, R. Surface acoustic wave NO2 sensor: Influence of humidity. Sens. Actuators B Chem. 1993, 14, 642–645. [Google Scholar] [CrossRef]
- Jasek, K.; Pasternak, M. Influence of Humidity on SAW Sensor Response. Acta Phys. Polonica A 2013, 124, 448–450. [Google Scholar] [CrossRef]
- Müller, C.; Nirmaier, T.; Rügemer, A.; Schickfus, M.V. Sensitive NO2 detection with surface acoustic wave devices using a cyclic measuring technique. Sens. Actuators B Chem. 2000, 68, 69–73. [Google Scholar] [CrossRef]
- Wen, C.; Zhu, C.; Ju, Y.; Xu, H.; Qiu, Y. A novel NO2 gas sensor using dual track SAW device. Sens. Actuators A Phys. 2010, 159, 168–173. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, H.B.; Roh, Y.R.; Cho, H.M.; Baik, S. Development of a saw gas sensor for monitoring SO2 gas. Sens. Actuators A Phys. 1998, 64, 173–178. [Google Scholar] [CrossRef]
- Lim, C.; Wang, W.; Yang, S.; Lee, K. Development of SAW-based multi-gas sensor for simultaneous detection of CO2 and NO2. Sens. Actuators B Chem. 2011, 154, 9–16. [Google Scholar] [CrossRef]
- Penza, M.; Milella, E.; Anisimkin, V.I. Monitoring of NH3 gas by LB polypyrrole-based SAW sensor. Sens. Actuators B Chem. 1998, 47, 218–224. [Google Scholar] [CrossRef]
- Tang, Y.-L.; Li, Z.-J.; Ma, J.-Y.; Guo, Y.-J.; Fu, Y.-Q.; Zu, X.-T. Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens. Actuators B Chem. 2014, 201, 114–121. [Google Scholar] [CrossRef]
- Wang, W.; Hu, H.; Liu, X.; He, S.; Pan, Y.; Zhang, C.; Dong, C. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane a Coating. Sensors 2016, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Li, Y.X.; Wlodarski, W.; Brennan, F. A Layered Structure Surface Acoustic Wave for Oxygen Sensing. In Proceedings of the Optoelectronic and Microelectronic Materials and Devices, Victoria, Australia, 6–8 December 2000. [Google Scholar]
- Zheng, P.; Chin, T.; Greve, D.; Oppenheim, I.; Malone, V.; Cao, L. High-temperature langasite SAW oxygen sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1538–1540. [Google Scholar] [CrossRef] [PubMed]
- Oglesby, D.M.; Upchurch, B.T.; Leighty, B.D.; Collman, J.P.; Zhang, X.; Hermann, P.C. Surface Acoustic Wave Oxygen Sensor. Anal. Chem. 1994, 66, 2745–2751. [Google Scholar] [CrossRef]
- Westafer, R.S.; Levitin, G.; Hess, D.W.; Bergin, M.H.; Hunt, W.D. Detection of ppb ozone using a dispersive surface acoustic wave reflective delay line with integrated reference signal. Sens. Actuators B Chem. 2014, 192, 406–413. [Google Scholar] [CrossRef]
- Reichert, J.; Coerdt, W.; Ache, H.J. Development of a surface acoustic wave sensor array for the detection of methanol in fuel vapours. Sens. Actuators B Chem. 1993, 13, 293–296. [Google Scholar] [CrossRef]
- Tang, K.-T.; Li, C.-H.; Chiu, S.-W. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications. Sensors 2011, 11, 4609–4621. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Du, X.; Long, Y.; Tang, X.; Chen, Z.; Jiang, Y. Real-time detection of styrene using SAW sensors based on hexafluoroisopropanol group functionalized hydrogen-bond acidic polymers. Sens. Actuators B Chem. 2015, 206, 252–257. [Google Scholar] [CrossRef]
- Houser, E.J.; Mlsna, T.E.; Nguyen, V.K.; Chung, R.; Mowery, R.L.; Andrew McGill, R. Rational materials design of sorbent coatings for explosives: Applications with chemical sensors. Talanta 2001, 54, 469–485. [Google Scholar] [CrossRef]
- Kannan, G.K.; Nimal, A.T.; Mittal, U.; Yadava, R.D.S.; Kapoor, J.C. Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection. Sens. Actuators B Chem. 2004, 101, 328–334. [Google Scholar] [CrossRef]
- Grate, J.W. Acoustic Wave Microsensor Arrays for Vapor Sensing. Chem. Rev. 2000, 100, 2627–2648. [Google Scholar] [CrossRef] [PubMed]
- Ricco, A.J.; Crooks, R.M.; Osbourn, G.C. Surface Acoustic Wave Chemical Sensor Arrays: New Chemically Sensitive Interfaces Combined with Novel Cluster Analysis to Detect Volatile Organic Compounds and Mixtures. Acc. Chem. Res. 1998, 31, 289–296. [Google Scholar] [CrossRef]
- Grate, J.W.; Mcgill, R.A.; Abraham, M.H. Chemically Selective Polymer-Coatings for Acoustic Vapor Sensors and Arrays. Ultrason 1992, 275–279. [Google Scholar]
- Cunha, M.P.D. Wireless Sensing in Hostile Environments. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013; pp. 1337–1346. [Google Scholar]
- Tortissier, G.; Blanc, L.; Tetelin, A.; Lachaud, J.L.; Benoit, M.; Conédéra, V.; Dejous, C.; Rebière, D. Langasite Based Surface Acoustic Wave Sensors for High Temperature Chemical Detection in Harsh Environment. Procedia Chem. 2009, 1, 963–966. [Google Scholar] [CrossRef]
- Thiele, J.A.; da Cunha, M.P. High temperature LGS SAW gas sensor. Sens. Actuators B Chem. 2006, 113, 816–822. [Google Scholar] [CrossRef]
- Tortissier, G.; Blanc, L.; Tetelin, A.; Lachaud, J.L.; Benoit, M.; Conédéra, V.; Dejous, C.; Rebière, D. Langasite based surface acoustic wave sensors for high temperature chemical detection in harsh environment: Design of the transducers and packaging. Sens. Actuators B Chem. 2011, 156, 510–516. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Zhang, S.-Y.; Fan, L.; Shui, X.-J. Characteristics of SAW hydrogen sensors based on InOx/128°YX-LiNbO3 structures at room temperature. Sens. Actuators B Chem. 2012, 173, 710–715. [Google Scholar] [CrossRef]
- Sadek, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A polyaniline/WO3 nanofiber composite-based ZnO/64° YX LiNbO3 SAW hydrogen gas sensor. Synth. Metals 2008, 158, 29–32. [Google Scholar] [CrossRef]
- Vetelino, J.F.; Lade, R.K.; Falconer, R.S. Hydrogen Sulfide Surface Acoustic Wave Gas Detector. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1987, 34, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.; Li, H.; Fu, C.; Ke, Y.; He, S. Development of a SnO2/CuO-coated surface acoustic wave-based H2S sensor with switch-like response and recovery. Sens. Actuators B Chem. 2012, 169, 10–16. [Google Scholar] [CrossRef]
- Nieuwenhuizen, M.S.; Nederlof, A.J.; Vellekoop, M.J.; Venema, A. Preliminary results with a silicon-based surface acoustic wave chemical sensor for NO2. Sens. Actuator 1989, 19, 385–392. [Google Scholar] [CrossRef]
- Korsah, K.; Ma, C.L.; Dress, B. Harmonic frequency analysis of SAW resonator chemical sensors: Application to the detection of carbon dioxide and humidity1. Sens. Actuators B Chem. 1998, 50, 110–116. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Rajamani, R.; Smith, C.S.; McGee, K.A.; Mann, K.R.; Yamashita, N. Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing. Sens. Actuators B Chem. 2008, 132, 296–304. [Google Scholar] [CrossRef]
- Beck, K.; Kunzelmann, T.; von Schickfus, M.; Hunklinger, S. Contactless surface acoustic wave gas sensor. Sens. Actuators A Phys. 1999, 76, 103–106. [Google Scholar] [CrossRef]
- Qin, S.; Wu, Z.; Tang, Z.; Song, Y.; Zeng, F.; Zhao, D. The sensitivity to SO2 of the SAW gas sensor with triethanolamine modified with boric acid. Sens. Actuators B Chem. 2000, 66, 240–242. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Huang, C.-P.; Huang, W.-T. Gas-detecting properties of surface acoustic wave ammonia sensors. Sens. Actuators B Chem. 2004, 101, 1–7. [Google Scholar] [CrossRef]
- Penza, M.; Milella, E.; Anisimkin, V.I. Gas sensing properties of Langmuir-Blodgett polypyrrole film investigated by surface acoustic waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhu, C.; Ju, Y.; Liu, L.; Li, W.; Yan, D.; Xu, H.; Qiu, Y. A SF6 gas sensor using a dual track SAW device based on multi-wall carbon nanotubes. Smart Mater. Struct. 2011, 20, 035006. [Google Scholar] [CrossRef]
- Bender, S.; Dickert, F.L.; Mokwa, W.; Pachatz, P. Investigations on temperature controlled monolithic integrated surface acoustic wave (SAW) gas sensors. Sens. Actuators B Chem. 2003, 93, 164–168. [Google Scholar] [CrossRef]
- Groves, W.A.; Zellers, E.T.; Frye, G.C. Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: Selection and characterization of the preconcentrator adsorbent. Anal. Chim. Acta 1998, 371, 131–143. [Google Scholar] [CrossRef]
- Chiang, M.C.; Hao, H.C.; Hsiao, C.Y.; Liu, S.C.; Yang, C.M.; Tang, K.T.; Yao, D.J. Gas Sensor Array Based on Surface Acoustic Wave Devices for Rapid Multi-Detection. In Proceedings of the 2012 IEEE Nanotechnology Materials and Devices Conference (NMDC), Waikiki Beach, HI, USA, 16–19 October 2012; pp. 139–142. [Google Scholar]
- Yao, D.J.; Chen, M.C.; Hao, H.C.; Chao, J.S. Gas Sensor Array Based on Surface Acoustic Wave Devices for Vapors Detection and Analysis. In Proceedings of the 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 20–23 January 2010; pp. 267–271. [Google Scholar]
- Frye, G.C.; Cernosek, R.W.; Steinfort, T.D.; Gilbert, D.W.; Colburn, C. Above-Ground and In Situ Field Screening of VOCs Using Portable Acoustic Wave Sensor (PAWS) Systems. In Proceedings of the International Symposium on Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Pittsburgh, PA, USA, 22–24 February 1995. [Google Scholar]
- Rapp, M.; Reibel, J.; Voigt, A.; Balzer, M.; Bülow, O. New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators. Sens. Actuators B Chem. 2000, 65, 169–172. [Google Scholar] [CrossRef]
- Ho, C.; Lindgren, E.; Rawlinson, K.; McGrath, L.; Wright, J. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds. Sensors 2003, 3, 236–247. [Google Scholar] [CrossRef]
- Raj, V.B.; Singh, H.; Nimal, A.T.; Sharma, M.U.; Gupta, V. Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents. Sens. Actuators B Chem. 2013, 178, 636–647. [Google Scholar] [CrossRef]
Substrate Material | Reported SAW Velocity (m/s) | K2 (%) | TCF (ppm/C) | ε | Tmax (C) |
---|---|---|---|---|---|
ST-X Quartz | 3159.3 [30] | 0.11 | 0 | 3.7 | 573 |
Y-Z LiNbO3 | 3487.7 [30] | 4.80 | 94 | 1150 | |
128Y-X LiNbO3 | 3992 [43] | 5.6 | 75 | 83 | |
64Y-X LiNbO3 | 4742.5 * [54] | 11.3 | 80 | ||
Y-Z LiTaO3 | 3230 * [42] | 0.74 | 35 | 665 | |
X-112Y LiTaO3 | 3301 * [45] | 0.64 | 18 | 52 | |
(0, 138.5, 26.8) La3Ga5SiO14 | 2734 † [44] | 0.34 | ~0 | 18 | 1470 |
(0001) AlN | 5607 [55] | 0.30 | 19 | 8.5 | 2200 |
(001)-<110> GaAs | 2864 [52] | 0.07 | 35 | 12.9 | |
ZnO | 2645 [47] | 1.8 | 15 | 10 | 1170 |
Analyte | Transducer Detail | Sensing Layer | Sensitivity (η) and Lower Limit (LL) | Operating Condition/Comments |
---|---|---|---|---|
H2 | 75 MHz Y-Z LiNbO3 2-port DL [103] | Palladium (Pd) | LL = 50 ppm, phase | H2 in N2 at room temperature (@RT) |
12MHz 128° Y-X LiNbO3 2-port DL [150] | Sputtered InOx | η = 11.83 kHz/400 ppm (H2 in air), LL = 100 ppm H2 mixed with N2 | H2 in N2 or air, @RT, 55% RH, measured f, , and insertion loss IL ( and IL not stable below 2000 ppm) | |
107.2 MHz ZnO/64° Y-X LiNbO3 2-port Res [151] | Polyaniline/WO3 composite nanofiber | η = 7 kHz/1%H2, LL = 0.06% | H2 in synthetic air @RT | |
H2S | 60 MHz Y-Z LiNbO3 2-port DL [152] | Sputtered WO3 | η = 0.35 kHz/ppm, LL < 1 ppm | H2S in air @130 °C |
147 MHz 36° Y-X LiTaO3 2-port DL [153] | SnO2/CuO by sputtering | η ~ 16.9 kHz/ppm, LL ~ 0.53 ppm | H2S in air, @160 °C (70–205 °C), SH-SAW sensor | |
118.5 MHz 64° Y-X LiNbO3 2-port DL [100] | Cu NP-decorated SWCNT/drop-cast | LL = 5 ppm | H2S, H2, ethanol, acetone in air, @RT and 25–200 °C, stable f = 1 Hz | |
NO2 | ZnO/SiO2/Si and Quartz DL [154] | CuPc by physical vapor deposition (PVD) | η ~ 920.0 Hz/ppm | NO2, NH3, and H2O @ 150 °C; variable sensitivity |
101.764 MHz; 128° Y-X LiNbO3 [128] | Sprayed WO3 | η ~ 7 kHz/ppm, LL = 0.5 ppm | Dual track SAW device, @25 °C, 80 °C | |
262 MHz ST-X Quartz 2-port Res [111] | Graphene by ink-jet printing | η ~ 25 Hz/ppm, LL < 0.5 ppm | NO2 in air, @RT | |
CO2 | 440 MHz 41° Y-X LiNbO3 reflective DL [32] | Teflon-AF | η ~ 2°/ppm | @RT, humidity and temperature effects |
250 MHz ST-Quartz 2-port Res [155] | Spin-coated polymers | η ~ 4.17 Hz/ppm | CO2 in N2@RT, CO2 and H2O vapor studied, third harmonic analysis of central frequency was performed | |
286 MHz 128° Y-X LiNbO3 DL [156] | Self-assembled functionalized SWCNT | η ~ 6 mV/% (attenuation), LL ~ 3.5% | CO2 in N2 @RT, studied the humidity effect | |
CH4 | 363 MHz Y-Z LiNbO3 DL [157] | Sputtered SnO2 (for CH4) | LL < 500 ppm | Contactless sensor, CH4, NO2, toluene in air, @300–450 °C. |
299.4 MHz ST-X quartz 2-port Res [133] | Spin-coated or drop-casted Cryptophane-A | η ~ 204 Hz/%, LL ~ 0.05% | CH4 in N2, humidity effect, @RT | |
SO2 | 131 MHz AT-cut Quartz DL [158] | Sprayed triethanolamine (TEA)—boricacid composite | η ~ 200 Hz/ppm, LL < 8 ppm | SO2 in N2@12 °C, used TEA, TEA-boric acid composites, and boric acid as sensing layer |
54 MHz LiTaO3 DL [129] | Spray pyrolysis of CdS, mass and electric loading | LL < 200 ppb | SO2 in air @RT | |
NH3 | 100 MHz 128° Y-X LiNbO3 DL [159] | Brushed-coated l-glutamic acid hydrochloride | η ~ 0.48 ppm/ppm LL = 0.56 ppm | NH3 in air @RT, (frequency-based), humidity effect |
42 MHz 128° Y-X LiNbO3 DL [131,160] | LB-coated polypyrrole | η ~ 0.13 ppm/ppm | NH3 in mixture of CO, CH4, H2, O2 @RT, (phase-based) | |
ST-cut Quartz Res [132] | ZnO/SiO2, sol-gel/spin-coated | η = 66.7 Hz/ppm LL= 5 ppm | NH3 in air, @RT | |
SF6 | 42 MHz 128° Y-X LiNbO3 DL [161] | Drop cast of acid-treated MWCNT | η = 7.4 kHz/ppm, LL = 9.5 ppm | SF6, SO2, and HF in air @RT, (dual track SAW) |
O3 | 433 MHz Y-Z LiNbO3 reflective DL [137] | Spin-coated Polybutadiene | LL = 63 ppb | O3 in dry air @RT, recorded temperature, and humidity effect |
O2 | 334 MHz Langasite reflective DL [135] | Sputtered ZnO | LL = 20% | O2 in N2, @ 500 °C to 700 °C |
CO | 07.2 MHz ZnO/64° Y-X LiNbO3 2-port Res [104] | Drop-casted polyaniline/In2O3 composite | LL = 60 ppm | CO, H2, NO2 in synthetic air, @RT |
Aromatic and polar compounds | 700 MHz AlN DL [162] | Imprinted polymers (for aromatic) and polyeurethane (for polar), spin coating | LL as low as 0.5 ppm for some vapors. | Benzene, toluene and xylene, ethanol, butane, and propane in air, @25–35 °C temperature effect |
VOCs | 433 MHz dual-port Res (commercial) [78] | Electro-sprayed ZnO | PCA analysis, concentration range:100–5000 ppm | Acetone, trichloroethylene, chloroform, ethanol, propanol, methanol in air @22 °C, humidity effect |
Organophosphorus compounds | 434 MHz Y-Z LiNbO3 reflective DL, [57] | SXFA, solvent-evaporation | η ~ 20°/mgm−3, LL < 0.5 mg/m3 | DMMP in N2, @25 °C, 85 °C, wireless sensor |
Explosives and CWAs | 36–434 MHz Quartz, LiNbO3 and ZnO/glass Res or DL [66] | Drop-dried polymers | as low as 8.3 Hz/ppb, LL as low as 3 ppb | TNT, DNT, Sarin, and DMMP in N2, @RT |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devkota, J.; Ohodnicki, P.R.; Greve, D.W. SAW Sensors for Chemical Vapors and Gases. Sensors 2017, 17, 801. https://doi.org/10.3390/s17040801
Devkota J, Ohodnicki PR, Greve DW. SAW Sensors for Chemical Vapors and Gases. Sensors. 2017; 17(4):801. https://doi.org/10.3390/s17040801
Chicago/Turabian StyleDevkota, Jagannath, Paul R. Ohodnicki, and David W. Greve. 2017. "SAW Sensors for Chemical Vapors and Gases" Sensors 17, no. 4: 801. https://doi.org/10.3390/s17040801
APA StyleDevkota, J., Ohodnicki, P. R., & Greve, D. W. (2017). SAW Sensors for Chemical Vapors and Gases. Sensors, 17(4), 801. https://doi.org/10.3390/s17040801