Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Preparation
3. Methods
3.1. Preprocessing of Multi-Temporal Satellite Data
3.1.1. Calculation of Vegetation Index
3.1.2. Reconstruction of EVI Time Series
3.2. Detection of Rice Phenology
3.3. Establishment of Rice Phenological Metrics
4. Results
4.1. Extraction of Rice Phenology
4.2. Phenological Differences in Rice under Heavy Metal Stress
4.2.1. Differences in the Intervals of Rice Phenological Periods under Heavy Metal Stress
4.2.2. Differences in the Time-Integrated EVI of Rice Phenology under Heavy Metal Stress
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Woo, S.; Yum, S.; Park, H.-S.; Lee, T.-K.; Ryu, J.-C. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2009, 149, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Li, J. Environmental effects of heavy metals derived from the e-waste recycling activities in China: A systematic review. Waste Manag. 2014, 34, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, X.; Wu, L.; Liu, M. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 118–129. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Wu, L.; Xu, Z.; Gong, L. Optimizing the Temporal Scale in the Assimilation of Remote Sensing and WOFOST Model for Dynamically Monitoring Heavy Metal Stress in Rice. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1685–1695. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Li, M.; Fang, M.; Chi, W. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 2010, 106, 223–233. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Jin, M.; Ding, C.; Jiang, J.; Wu, L. Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors 2016, 16, 340. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, L.; Salas, E.A.L.; Clevers, J.; Wehrens, R.; Leuven, R.; Nienhuis, P.H.; Buydens, L.M.C. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ. Pollut. 2004, 127, 281–290. [Google Scholar] [CrossRef]
- Ren, H.Y.; Zhuang, D.F.; Pan, J.J.; Qiu, D.S. Canopy Hyperspectral Characteristics of Paddy Plants Contaminated by Lead. Geo-Inf. Sci. 2008, 10, 314–319. [Google Scholar]
- Liu, M.; Liu, X.; Ding, W.; Wu, L. Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 246–255. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Zhao, L.; Ding, C.; Jiang, J.; Wu, L. The Dynamic Assessment Model for Monitoring Cadmium Stress Levels in Rice Based on the Assimilation of Remote Sensing and the WOFOST Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1330–1338. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Capelle, G.A.; Di Benedetto, J.A.; Mao, C.Y.; Thai, C.N.; Evans, M.D.; Richards, J.T.; Blank, T.A.; Stryjewski, E.C. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge). Remote Sens. Environ. 2003, 84, 572–588. [Google Scholar] [CrossRef]
- Rosso, P.H.; Pushnik, J.C.; Lay, M.; Ustin, S.L. Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ. Pollut. 2005, 137, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Liu, H.; Wang, J.; Chen, Y.; Fei, T.; Wu, G. Monitoring Arsenic Contamination in Agricultural Soils with Reflectance Spectroscopy of Rice Plants. Environ. Sci. Technol. 2014, 48, 6264–6272. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Brown, M.E.; de Beurs, K.M. Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall. Remote Sens. Environ. 2008, 112, 2261–2271. [Google Scholar] [CrossRef]
- Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 2000, 44, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Filippis, L.; Pallaghy, C. Heavy metals: sources and biological effects. In Advances in Limnology Series: Algae and Water Pollution; Rai, L.C., Gaur, J.P., Soeder, C.J., Eds.; Scheizerbartsche Press: Stuttgart, Germany, 1994. [Google Scholar]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar] [PubMed]
- Wang, Q.-E.; Zeng, Y.; Li, L.-M. Advances on the Effect of Cadmium Damage on Physiology and Ecology of Rice. North Rice. 2007, 4, 12–16. [Google Scholar]
- Costa, G.; Spitz, E. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci. 1997, 128, 131–140. [Google Scholar] [CrossRef]
- Eerens, H.; Haesen, D.; Rembold, F.; Urbano, F.; Tote, C.; Bydekerke, L. Image time series processing for agriculture monitoring. Environ. Model. Softw. 2014, 53, 154–162. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Stöckli, R.; Vidale, P.L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 2004, 25, 3303–3330. [Google Scholar] [CrossRef]
- Dubovyk, O.; Landmann, T.; Dietz, A.; Menz, G. Quantifying the Impacts of Environmental Factors on Vegetation Dynamics over Climatic and Management Gradients of Central Asia. Remote Sens. 2016, 8, 600. [Google Scholar] [CrossRef]
- Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 2001, 45, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Yao, X.; Deng, X.; Tian, Y.; Cao, W.; Zhu, Y. Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Res. 2016, 198, 131–139. [Google Scholar] [CrossRef]
- Li, S.; Xiao, J.; Ni, P.; Zhang, J.; Wang, H.; Wang, J. Monitoring paddy rice phenology using time series MODIS data over Jiangxi Province, China. Int. J. Agric. Biol. Eng. 2014, 7, 28–36. [Google Scholar]
- Environmental Quality Standard for Soils (GB 15618-1995); Standards Press of China: Beijing, China, 1995.
- Suo, L.; Liu, B.; Zhao, T.; Wu, Q.; An, Z. Evaluation and analysis of heavy metals in vegetable field of Beijing. Trans. Chin. Soc. Agric. Eng. 2016, 32, 179–186. [Google Scholar]
- Wang, J.; Huang, J.-F.; Wang, X.-Z.; Jin, M.-T.; Zhou, Z.; Guo, Q.-Y.; Zhao, Z.-W.; Huang, W.-J.; Zhang, Y.; Song, X.-D. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images. J. Zhejiang Univ. Sci. B. 2015, 16, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.K.; Huang, J.F.; Zhou, Q.B.; Wang, L.M.; Cheng, Y.X.; Zhang, H.K.; Blackburn, G.A.; Yan, J.; Liu, J.H. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Sun, H.; Huang, J.; Peng, D. Detecting major growth stages of paddy rice using MODIS data. J. Remote Sens. 2009, 13, 1122–1137. [Google Scholar]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Chen, W.; Lin, X. Preliminary Comparison of MODIS-NDVI and MODIS-EVI in Eastern Asia. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 407–410. [Google Scholar]
- Huete, A.; Justice, C.; Liu, H. Development of Vegetation and Soil Indexes for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, X.; Shu, Q.; Shang, K.; Wen, K. Comparison on Three Algorithms of Reconstructing Time-series MODIS EVI. J. Geo-Inf. Sci. 2015, 17, 732–741. [Google Scholar]
- TIMESAT: A Software Package to Analyse Time-Series of Satellite Sensor Data. Available online: http://www.nateko.lu.se/timesat/timesat.asp (accessed on 27 April 2017).
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE. T. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- Cao, Y.F.; Wang, Z.X.; Den, F.P. Fidelity performance of three filters for high quality NDVI time-series analysis. Remote Sens. Technol. Appl. 2010, 25, 118–125. [Google Scholar]
- Yu, F.F.; Price, K.P.; Ellis, J.; Shi, P.J. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, F.-C.; Jing, Y.-S.; Jiang, X.-D.; Yang, S.-B.; Han, X.-M. Multi-Temporal Detection of Rice Phenological Stages Using Canopy Spectrum. Rice Sci. 2014, 21, 108–115. [Google Scholar]
- Hill, M.J.; Donald, G.E. Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series. Remote Sens. Environ. 2003, 84, 367–384. [Google Scholar] [CrossRef]
- Zhao, Y. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2003. [Google Scholar]
- Khudsar, T.; Iqbal, M.; Sairam, R.K. Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biologia Plantarum. 2004, 48, 255–260. [Google Scholar] [CrossRef]
- Vassilev, A.; Tsonev, T.; Yordanov, I. Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environ. Pollut. 1998, 103, 287–293. [Google Scholar] [CrossRef]
- Vassilev, A.; Berova, M.; Zlatev, Z. Influence of Cd2+ on growth, chlorophyll content, and water relations in young barley plants. Biologia Plantarum. 1998, 41, 601–606. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Xu, M.; Wang, L.; Hu, S.; Wang, X. The source of heavy metal pollution and its effects on the growth and development of rice. Tillage Cultiv. 2004, 61, 13–15. [Google Scholar]
- Zhang, X.; Li, Q.; Peng, C.; Gao, H.; Wei, W.; Zhao, F.; Zhu, P. Effects of heavy metals on heavy metal accumulation of grain and yield in rice. Jilin Agric. Sci. 2015, 40, 13–16. [Google Scholar]
Heavy Metals | Background Value(bi) 1 | A | B | C | D | ||||
---|---|---|---|---|---|---|---|---|---|
27°46′58″ N | 27°58′40″ N | 27°39′58″ N | 27°49′15″ N | ||||||
113°9′59″ E | 113°05′56″ E | 113°09′51″ E | 113°02′9″ E | ||||||
Soil (si) | Pollution Index (si/bi) | Soil (si) | Pollution Index (si/bi) | Soil (si) | Pollution Index (si/bi) | Soil (si) | Pollution Index (si/bi) | ||
Cd | 1.43 | 0.84 | 0.59 | 1.37 | 0.96 | 2.31 | 1.62 | 3.42 | 2.39 |
Pb | 82.78 | 78.33 | 0.95 | 59.45 | 0.72 | 91.05 | 1.10 | 114.85 | 1.39 |
As | 19.11 | 10.23 | 0.54 | 16.75 | 0.88 | 17.34 | 0.91 | 17.78 | 0.93 |
Pollution Level | Mild | Severe |
MEAN/STD | Area A | Area B | Area C | Area D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
Cd | 0.678/0.009 | 0.881/0.007 | 0.952/0.004 | 1.26/0.013 | 1.38/0.005 | 1.47/0.009 | 2.22/0.01 | 2.35/0.003 | 2.36/0.008 | 3.11/0.15 | 3.31/0.009 | 3.84/0.005 |
Pb | 68.79/0.43 | 88.2/0.89 | 78/0.77 | 57.45/0.78 | 62.9/0.54 | 58/0.88 | 83/0.65 | 103.15/1.59 | 87/0.78 | 111/1.08 | 118.55/1.23 | 115/0.56 |
As | 7.29/0.53 | 11.8/0.58 | 11.6/0.51 | 16.25/0.34 | 17.9/0.67 | 16.1/0.52 | 16.5/0.56 | 18.22/0.87 | 17.3/0.39 | 15.46/0.67 | 19.6/0.76 | 18.28/0.54 |
STD | Area A | Area B | Area C | Area D |
---|---|---|---|---|
Tillering | 0.90 | 1.00 | 0.87 | 0.83 |
Heading | 0.47 | 1.20 | 0.73 | 0.68 |
Maturation | 0.84 | 1.45 | 0.74 | 0.81 |
Experiment Areas | L1 | L2 | L3 | |||
---|---|---|---|---|---|---|
STD | Max/Min | STD | Max/Min | STD | Max/Min | |
Area A | 0.73 | 28/26 | 0.73 | 26/24 | 1.46 | 54/50 |
Area B | 0.81 | 29/26 | 0.68 | 27/24 | 1.22 | 56/51 |
Area C | 0.89 | 26/23 | 0.77 | 26/22 | 0.79 | 50/48 |
Area D | 0.71 | 26/24 | 1.02 | 24/21 | 1.11 | 49/47 |
STD | Area A | Area B | Area C | Area D |
---|---|---|---|---|
TIEVI1 | 0.68 | 1.16 | 1.02 | 0.56 |
TIEVI2 | 0.57 | 1.23 | 0.65 | 0.58 |
TIEVI3 | 1.22 | 2.31 | 0.95 | 0.84 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, X.; Liu, M.; Wu, L.; Ding, C.; Huang, Z. Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data. Sensors 2017, 17, 1243. https://doi.org/10.3390/s17061243
Liu S, Liu X, Liu M, Wu L, Ding C, Huang Z. Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data. Sensors. 2017; 17(6):1243. https://doi.org/10.3390/s17061243
Chicago/Turabian StyleLiu, Shuyuan, Xiangnan Liu, Meiling Liu, Ling Wu, Chao Ding, and Zhi Huang. 2017. "Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data" Sensors 17, no. 6: 1243. https://doi.org/10.3390/s17061243
APA StyleLiu, S., Liu, X., Liu, M., Wu, L., Ding, C., & Huang, Z. (2017). Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data. Sensors, 17(6), 1243. https://doi.org/10.3390/s17061243