A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository
Abstract
:1. Introduction
- The progressive alkalization of the COx pore water due to degradation of concrete casings (pH up to 11.7).
- The wide range of redox potentials over the Pourbaix diagram due to: (i) gas emissions such as O2 due to excavation, H2 due to release from radioactive waste and metal corrosion, CO2 due to organic-matter degradation, H2S due to the activity of sulphate-reducing bacteria (SRB), or CH4 due to the activity of methanogenic bacteria; (ii) sulphide (HS−/S2−) production due to the activity of SRB; and (iii) nitrate (NO3−) production from the chemical and bacterial denitrification of the bitumen coating the concrete casings.
- The temperature increase due to radioactive disintegration (25 °C ≤ T ≤ 90 °C).
2. Methodology
2.1. Antimony-Based Electrodes for pH Sensing
2.2. Inert Electrodes for Redox Measurements
2.3. Ag-Based Electrodes Acting as Reference or Selective Electrodes
2.4. GEIS for Conductivity Measurements
3. Materials and Methods
3.1. Materials
3.1.1. Description of the All-Solid-State Electrode Surface Materials
Silver Chloride/Silver-, Silver Sulphide/Silver-Based Electrodes for the Development of Reference or Specific Electrodes
Antimony-Based All-Solid-State pH Electrode
Platinum, Gold and Glassy Carbon as Inert Electrodes for Redox Potential Measurements
3.1.2. Description of the Experimental Device and Its Components
3.1.3. Supporting Electrolytes: Buffers and Solutions
3.2. Methods
3.2.1. Potentiometric and/or pH Measurements
3.2.2. Conductivity Measurements
3.2.3. Geochemical Modelling
4. Results
4.1. All-Solid-State Monocrystalline Antimony pH Electrode
4.2. Influence of Anions at Atmospheric Pressure
4.2.1. Feasibility Study and Influence of Chloride on the OCP of Antimony-Based Electrodes
4.2.2. Influence of Nitrate on the OCP of Antimony-Based Electrodes
4.2.3. Influence of Phosphate on the OCP of Antimony-Based Electrodes
4.2.4. Influence of Carbonate and Ionic Strength on the OCP of Antimony-Based Electrodes
4.3. Calibration Curve of the Monocrystalline Sb Electrode at Amospheric Pressure and in the Glove Box. Comparison with a Pt Electrode. Investigation of Measurement Accuracy in the Reconstituted COx Pore Water
4.4. Investigation of Inert Pt, Au and GC Electrodes for Redox Potential Measurements
4.4.1. Electrode Performances and Robustness—Inert Electrodes
4.4.2. Comparison between Measured Potential, Speciation Measurements and Geochemical Modelling
- Eh = −165 mV/SHE in the presence of lepidocrocite + 0.10 × 10−6 M Fe2+ in solution.
- Eh = −157 mV/SHE in the presence of goethite + 0.07 × 10−6 M Fe2+ in solution.
4.5. All-Solid-State AgCl/Ag- and Ag2S/Ag-Based Electrodes as Reference or Selective Electrodes
4.5.1. Experiments Performed at Constant pH (7.4)
4.5.2. Experiments Performed under pH Variations
4.6. Measurements of the Conductivity in Solution from the Multi-Parameter Probe
4.6.1. Influence of the Alternating Current Frequency
4.6.2. Determination of the Geometric Factors
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Altmann, S. “Geo”chemical research: A key building block for nuclear waste disposal safety cases. J. Contam. Hydrol. 2008, 102, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Lassin, A.; Marty, N.C.M.; Gailhanou, H.; Henry, B.; Trémosa, J.; Lerouge, C.; Madé, B.; Altmann, S.; Gaucher, E.C. Equilibrium partial pressure of CO2 in Callovian-Oxfordian argillite as a function of relative humidity: Experiments and modelling. Geochim. Cosmochim. Acta 2016, 186, 91–104. [Google Scholar] [CrossRef]
- Gaucher, E.C.; Robelin, C.; Matray, J.M.; Négrel, G.; Gros, Y.; Heitz, J.F.; Vinsot, A.; Rebours, H.; Cassagnabère, A.; Bouchet, A. ANDRA underground research laboratory: Interpretation of the mineralogical and geochemical data acquired in the Callovian–Oxfordian formation by investigative drilling. Phys. Chem. Earth 2004, 29, 55–77. [Google Scholar] [CrossRef]
- Pearson, F.J.; Tournassat, C.; Gaucher, E.C. Biogeochemical processes in a clay formation in situ experiment: Part E—Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland. Appl. Geochem. 2011, 26, 990–1008. [Google Scholar] [CrossRef]
- Gaucher, E.C.; Tournassat, C.; Pearson, F.J.; Blanc, P.; Crouzet, C.; Lerouge, C.; Altmann, S. A robust model for pore-water chemistry of clayrock. Geochim. Cosmochim. Acta 2009, 73, 6470–6487. [Google Scholar] [CrossRef]
- Kars, M.; Lerouge, C.; Grangeon, S.; Aubourg, C.; Tournassat, C.; Madé, B.; Claret, F. Identification of nanocrystalline goethite in reduced clay formations: Application to the Callovian-Oxfordian formation of Bure (France). Am. Mineral. 2015, 100, 1544–1553. [Google Scholar] [CrossRef]
- Tournassat, C.; Vinsot, A.; Gaucher, E.C.; Altmann, S. Chemical conditions in clay-rocks. Dev. Clay Sci. 2015, 6, 71–100. [Google Scholar]
- Glab, S.; Hulanicki, A.; Edwall, G.; Ingman, F. Metal-metal oxide and metal oxide electrodes as pH sensors. Crit. Rev. Anal. Chem. 1989, 21, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Pourbaix, M. Atlas D’équilibres Electrochimiques; Gauthier-Villars & Cie.: Paris, France, 1963. [Google Scholar]
- Wang, M.; Ha, Y. An electrochemical approach to monitor pH change in agar media during plant tissue culture. Biosens. Bioelectron. 2007, 22, 2718–2723. [Google Scholar] [CrossRef] [PubMed]
- Capelato, M.D.; dos Santos, A.M.; Fatibello-Filho, O.; Gama, R. Flow injection potentiometric determination of coke acidity and acetic acid content in vinegar using an antimony electrode. Anal. Lett. 1996, 29, 711–724. [Google Scholar] [CrossRef]
- Caflisch, C.R.; Pucacco, L.R.; Carter, N.W. Manufacture and utilization of antimony pH electrodes. Kidney Int. 1978, 14, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.F.; Guo, M.K. Resting dental plaque pH values after repeated measurements at different sites in the oral cavity. Proc. Natl. Sci. Counc. Repub. China B 2000, 24, 187–192. [Google Scholar] [PubMed]
- Baghdady, N.H.; Sommer, K. Improved construction of antimony micro-electrodes for measuring pH-changes at the soil-root interface (rhizosphere). J. Plant Nutr. 1987, 10, 1231–1238. [Google Scholar] [CrossRef]
- Kinoshita, E.; Ingman, F.; Edwall, G.; Thulin, S.; Głab, S. Polycrystalline and monocrystalline antimony, iridium and palladium as electrode material for pH-sensing electrodes. Talanta 1986, 33, 125–134. [Google Scholar] [CrossRef]
- Glab, S.; Edwall, G.; Jöngren, P.A.; Ingman, F. Effects of some complex-forming ligands on the potential of antimony pH-sensors. Talanta 1981, 28, 301–311. [Google Scholar] [PubMed]
- Edwall, G. Improved antimony-antimony(III)oxide pH electrodes. Med. Biol. Eng. Comput. 1978, 16, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Uhl, S.; Kestranek, W. Die Elektrometrische Titration Von Säuren Und Basen Mit Der Antimon-Indikatorelektrode. Monatsh. Chem. Teile Wiss. 1923, 44, 29–34. [Google Scholar] [CrossRef]
- Buytendijk, F.J.J. The Use of Antimony Electrode in the Determination of pH In Vivo. Arch. Neerl Physiol. 1927, 12, 319–321. [Google Scholar]
- Stock, J.T.; Purdy, W.C.; Garcia, L.M. The Antimony-Antimony Oxide Electrode. Chem. Rev. 1958, 58, 611–626. [Google Scholar] [CrossRef]
- Fog, A.; Buck, R.P. Electronic semiconducting oxides as pH sensors. Sens. Actuators 1984, 5, 137–146. [Google Scholar] [CrossRef]
- Galster, H. pH Measurement: Fundamentals, Methods, Applications, Instrumentation; Wiley-VCH: New York, NY, USA, 1991. [Google Scholar]
- Ask, P.; Edwall, G.; Johansson, K.E.; Tibbling, L. On the use of monocrystalline antimony pH electrodes in gastro-oesophageal functional disorders. Med. Biol. Eng. Comput. 1982, 20, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.; Edwall, G. Arterial pH monitoring with monocrystalline antimony sensors. A study of sensitivity for PO2 variations. Scand. J. Clin. Lab. Investig. 1982, 42, 323–329. [Google Scholar]
- Sjöberg, F.; Edwall, G.; Lund, N. The oxygen sensitivity of a multipoint antimony electrode for tissue pH measurements. A study of the sensitivity for in vivo PO2 variations below 6 kPa. Scand. J. Clin. Lab. Investig. 1987, 47, 11–15. [Google Scholar]
- Fenwick, F.; Gilman, E. The use of the antimony-antimony trioxide electrode for determining the dissociation constants of certain local anesthetics and related compounds. J. Biol. Chem. 1929, 84, 605–628. [Google Scholar]
- Mascini, M.; Cremisini, C. A new pH electrode for gas-sensing probes. Anal. Chim. Acta 1977, 92, 277–283. [Google Scholar] [CrossRef]
- Perley, G.A.; Company, N. Characteristics of the antimony electrode. Ind. Eng. Chem. Anal. Ed. 1939, 11, 319–322. [Google Scholar] [CrossRef]
- Green, R.; Giebisch, G. Some problems with the antimony microelectrode. In Ion Selective Microelectrodes; Berman, H.J., Herbert, N.S., Eds.; Plenum Press: New York, NY, USA, 1974; pp. 43–53. [Google Scholar]
- Quehenberger, P. The influence of carbon dioxide, bicarbonate and other buffers on the potential of antimony microelectrodes. Pflügers Arch. 1977, 368, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Wang, M. Capillary melt method for micro antimony oxide pH electrode. Electroanalysis 2006, 18, 1121–1125. [Google Scholar] [CrossRef]
- Koncki, R.; Mascini, M. Screen-printed ruthenium dioxide electrodes for pH measurements. Anal. Chim. Acta 1997, 351, 143–149. [Google Scholar] [CrossRef]
- Ives, D.J.G. Oxide, oxygen, and sulfide electrodes. In Reference Electrodes: Theory and Practice; Ives, D.J.G., Janz, G.J., Eds.; Academic Press: London, UK; New York, NY, USA, 1961; pp. 322–391. [Google Scholar]
- Betelu, S.; Parat, C.; Petrucciani, N.; Castetbon, A.; Authier, L.; Potin-Gautier, M. Semicontinuous monitoring of cadmium and lead with a screen-printed sensor modified by a membrane. Electroanalysis 2007, 19, 399–402. [Google Scholar] [CrossRef]
- McMurray, H.N.; Douglas, P.; Abbot, D. Novel thick-film pH sensors based on ruthenium dioxide-glass composites. Sens. Actuators 1995, 28, 9–15. [Google Scholar] [CrossRef]
- Qingwen, L.; Guoan, L.; Youqin, S. Response of nanosized cobalt oxide electrodes as pH sensors. Anal. Chim. Acta 2000, 409, 137–142. [Google Scholar] [CrossRef]
- Kampouris, D.K.; Kadara, R.O.; Jenkinson, N.; Banks, C.E. Screen printed electrochemical platforms for pH sensing. Anal. Methods 2009, 1, 25–28. [Google Scholar] [CrossRef]
- Betelu, S.; Polychronopoulou, K.; Rebholz, C.; Ignatiadis, I. Novel CeO2-based screen-printed potentiometric electrodes for pH monitoring. Talanta 2011, 87, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Parat, C.; Betelu, S.; Authier, L.; Potin-Gautier, M. Determination of labile trace metals with screen-printed electrode modified by a crown-ether based membrane. Anal. Chim. Acta 2006, 573, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Betelu, S.; Vautrin-Ul, C.; Ly, J.; Chaussé, A. Screen-printed electrografted electrode for trace uranium analysis. Talanta 2009, 80, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; Wiley & Son: New York, NY, USA, 1996. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd ed.; Wiley & Son: New York, NY, USA, 1981. [Google Scholar]
- Schüring, J.; Schulz, H.D.; Fischer, W.R.; Böttcher, J.; Duijnisveld, W.H.M. Redox: Fundamentals, Processes and Applications; Springer: Berlin, Heidelberg, Germany, 2000. [Google Scholar]
- Brookins, D.G. Eh-pH Diagrams for Geochemistry; Springer: New York, NY, USA, 1988. [Google Scholar]
- Saban, S.B.; Darling, R.B. Multi-element heavy metal ion sensors for aqueous solutions. Sens. Actuators 1999, 61, 128–137. [Google Scholar] [CrossRef]
- Michalska, A. All-solid-state ion selective and all-solid-state reference electrodes. Electroanalysis 2012, 24, 1253–1265. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal. Chem. 2016, 102–114. [Google Scholar] [CrossRef]
- Blaz, T.; Migdalski, J.; Lewenstam, A.; Lewenstam, A.; Ivaska, A.; Strong, T.D.; Brown, R.B.; VanKessel, A.L.; Zijlstra, W.G. Junction-less reference electrode for potentiometric measurements obtained by buffering pH in a conducting polymer matrix. Analyst 2005, 130, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Kwon, N.H.; Lee, K.S.; Won, M.S.; Shim, Y.B. An all-solid-state reference electrode based on the layer-by-layer polymer coating. Analyst 2007, 132, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, A.; Marcisz, H.; Michalska, A.; Maksymiuk, K. All-solid-state reference electrodes based on conducting polymers. Analyst 2005, 130, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M. Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environ. Monit. Assess. 2004, 96, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Brewer, P.J.; Leese, R.J.; Brown, R.J.C. An improved approach for fabricating Ag/AgCl reference electrodes. Electrochim. Acta 2012, 71, 252–257. [Google Scholar] [CrossRef]
- Stoica, D.; Brewer, P.J.; Brown, R.J.C.; Fisicaro, P. Influence of fabrication procedure on the electrochemical performance of Ag/AgCl reference electrodes. Electrochim. Acta 2011, 56, 10009–10015. [Google Scholar] [CrossRef]
- Betelu, S.; Vautrin-Ul, C.; Chaussé, A. Novel 4-carboxyphenyl-grafted screen-printed electrode for trace Cu(II) determination. Electrochem. Commun. 2009, 11, 383–386. [Google Scholar] [CrossRef]
- Edwall, G. Influence of crystallographic properties on antimony electrode potential-II. Monocrystalline material. Electrochim. Acta 1979, 24, 605–612. [Google Scholar] [CrossRef]
- Gaucher, E.C.; Blanc, P.; Bardot, F.; Braibant, G.; Buschaert, S.; Crouzet, C.; Gautier, A.; Girard, J.-P.; Jacquot, E.; Lassin, A.; et al. Modelling the porewater chemistry of the Callovian–Oxfordian formation at a regional scale. C. R. Geosci. 2006, 338, 917–930. [Google Scholar] [CrossRef]
- Tournassat, C.; Vinsot, A.; Gaucher, E.C.; Altmann, S. Chapter 3—Chemical conditions in clay-rocks. In Natural and Engineered Clay Barriers; Tournassat, C., Steefel, C.I., Bourg, I.C., Bergaya, F., Eds.; Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2015; Volume 6, pp. 71–100. [Google Scholar]
- Blanc, P.; Lassin, A.; Piantone, P.; Azaroual, M.; Jacquemet, N.; Fabbri, A.; Gaucher, E.C. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 2012, 27, 2107–2116. [Google Scholar] [CrossRef]
- AFNOR. ISO 6332:1988—Qualite De L’eau. Dosage Du Fer. Methode Spectrometrique a La Phenanthroline-1,10; AFNOR: La Plaine Saint-Denis, France, 1988. [Google Scholar]
- Gysinck, A. The use of antimony electrode for determining the degree of acidity: Suikerind. Chem. Abstr. 1933, 27, 2325–2327. [Google Scholar]
- Edwall, G. Influence of crystallographic properties on antimony electrode potential-I. Polycrystalline material. Electrochim. Acta 1979, 24, 595–603. [Google Scholar] [CrossRef]
- Betelu, S.; Ignatiadis, I.; Tournassat, C. Redox potential measurements in a claystone. Environ. Sci. Technol. Lett. 2017. under review. [Google Scholar]
- Rius-Ruiz, F.X.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Riu, J.; Rius, F.X. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Anal. Bioanal. Chem. 2011, 399, 3613–3622. [Google Scholar] [CrossRef] [PubMed]
Buffer Species | Effective pH Range |
---|---|
NH4+/NH3 | 7.2–11.0 |
HCO3−/CO32− | 9.1–11.1 |
H2PO4−/HPO42− | 5.5–7.8 |
Species in Solution | Concentration (M) | Species in Solution | Concentration (M) |
---|---|---|---|
Ca2+ | 0.0074 | SO42− | 0.0156 |
Mg2+ | 0.0067 | Cl− | 0.0400 |
Sr2+ | 0.0002 | Total Carbon | 0.0032 |
Na+ | 0.0450 | pH | 7.0–7.4 |
K+ | 0.0010 | Ionic strength | 0.1 |
Electrode | Average Value (pH Units) | Standard Deviation |
---|---|---|
Commercial pH electrode | 7.42 | ±0.03 |
Monocrystalline Sb-electrode | 7.37 | ±0.06 |
Pt electrodes (mV/SHE) | 7.32 | ±0.07 |
NaCl (M) | σ (S·m−1) | ρ (Ω·m) |
---|---|---|
10−1 | 1.2155 | 0.8227 |
10−2 | 0.12 | 8.3333 |
10−3 | 0.0126 | 79.3651 |
10−4 | 0.001274 | 784.9294 |
N° Couple | Injection Electrodes (I) | Induced Potential Electrodes (E) | |Z| (Ω) at Different NaCl Content (M) and at Frequency = 1373 Hz | k (m−1) | |||
---|---|---|---|---|---|---|---|
10−1 M | 10−2 M | 10−3 M | 10−4 M | ||||
1 | F4F1_AgCl | F3F2_AgCl | 58.98 | 475.55 | 3684.48 | 26,849.22 | 0.0296 |
2 | F5F2_AgCl | F4F3_AgCl | 60.37 | 484.18 | 3736.20 | 26,975.55 | 0.0294 |
3 | F5F1_AgCl | F4F2_AgCl | 119.39 | 957.7 | 7377.56 | 53,710.79 | 0.0148 |
4 | F4F1_Pt | F3F2_Pt | 58.45 | 472.20 | 3661.99 | 26,417.52 | 0.0301 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoudi, J.; Betelu, S.; Tzedakis, T.; Bertrand, J.; Ignatiadis, I. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository. Sensors 2017, 17, 1372. https://doi.org/10.3390/s17061372
Daoudi J, Betelu S, Tzedakis T, Bertrand J, Ignatiadis I. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository. Sensors. 2017; 17(6):1372. https://doi.org/10.3390/s17061372
Chicago/Turabian StyleDaoudi, Jordan, Stephanie Betelu, Theodore Tzedakis, Johan Bertrand, and Ioannis Ignatiadis. 2017. "A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository" Sensors 17, no. 6: 1372. https://doi.org/10.3390/s17061372
APA StyleDaoudi, J., Betelu, S., Tzedakis, T., Bertrand, J., & Ignatiadis, I. (2017). A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository. Sensors, 17(6), 1372. https://doi.org/10.3390/s17061372