Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds
Abstract
:1. Introduction
- the DQO is 30% for indicative measurements. It is defined as the relative expanded uncertainty of measurements and it shall be assessed in the region of the limit value (LV);
- the LV for the benzene annual mean is 5 μg/m3 (about 1.5 ppb at 20 °C and 101.3 kPa). Other important values defined in the AQD consist of the Upper Assessment and Lower Assessment Thresholds (UAT and LAT) which correspond to 3.5 and 2 μg/m3, respectively.
2. Principle of Operation and Type of Sensors
- Photo-ionization detectors (PID), both portable hand held instrument and Original Equipment Manufacturers (OEMs),
- OEM electrochemical sensors either of amperometric or potentiometric type,
- OEM metal oxide sensors (MOx) with change of conductivity instead of chemical reaction,
- Optical sensors including UV portable spectrometers,
- Portable or micro-gas chromatograph (μGC) that combines micro column with MOx or PID OEM as detectors. Flame ionization detectors (FID) are generally not considered in this review because of the need of an external hydrogen source for operation. Bench top instruments are excluded in this category for the lack of handiness and their high price range,
- and electronic noses and sensor-arrays.
3. Photo Ionization Detector
3.1. Principle
3.2. Commercially Available Sensors
3.3. Literature Survey
4. Amperometric Sensors
4.1. Principle of Operation
4.2. Commercial Sensors
- City Technology (city, UK) model 3ETO CiTiceL and 4ETO CiTiceL, 7ETO CiTiceL,
- Alphasense LTD (UK) model ETO-A1, ETO-B1,
- Membrapor AG (city, CH) model ETO/M-10 and ETO/C-20,
- and SGX Sensortech (CH) model EC4-10-ETO.
4.3. Literature Survey
5. Resistive Sensors
5.1. Principle of Operation
5.2. Commercially Available Sensors
5.3. Literature Survey
6. Spectroscopic Methods
7. Portable Miniaturized and Micro Gas Chromatographs
7.1. Principle of Portable and Micro Gas Chromatographs
7.2. Commercially Available Sensors
- an automated vapor sampling with transfer line between a gas chromatograph and a ion mobility spectrometry (IMS) the Environmental Vapor Monitor (EVM II) of Femtoscan [122],
- a portable gas chromatograph with 3 columns at 40–80 °C, PID sensor (10.6 eV) and internal cylinder for Ultra High Purity N2/Zero Air as carrier gas, the INFICON model Explorer Portable Gas Chromatograph [123]
7.3. Literature Survey
8. Electronic Noses and Sensors Arrays
8.1. Principle of Operation
8.2. Commercially Available Electronic Noses and Sensor Arrays
8.3. Literature Survey
9. Validation Studies
10. Conclusions
Acknowledgments
Conflicts of Interest
Appendix A
References
- World Health Organization. Who Guidelines for Indoor Air Quality: Selected Pollutants; WHO: Copenhagen, Denmark, 2010. [Google Scholar]
- World Health Organization. Air Quality Guidelines for Europe, 2nd ed.; WHO regional publications; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- The European Parliament and the Council of the European Union. Directive 2008/50/EC of the European Parliament and the Council of 21 May 2008 on Ambient Air Quality and Cleaner air for Europe; The European Parliament and the Council of the European Union: Strasbourg, France, 2008. [Google Scholar]
- BSI. Standard Method for Measurement of Benzene Concentrations—Part 1; Part 2 and Part 3: Automated Pumped Sampling with In Situ Gas Chromatography; BS EN 14662-3:2015; BSI: London, UK, 2015. [Google Scholar]
- Batterman, S.; Chambliss, S.; Isakov, V. Spatial resolution requirements for traffic-related air pollutant exposure evaluations. Atmos. Environ. 2014, 94, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Plaisance, H.; Leonardis, T.; Gerboles, M. Assessment of uncertainty of benzene measurements by Radiello diffusive sampler. Atmos. Environ. 2008, 42, 2555–2568. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in the European Community (INSPIRE); The European Parliament and the Council of the European Union: Strasbourg, France, 2007. [Google Scholar]
- De Vito, S.; Massera, E.; Piga, M.; Martinotto, L.; Di Francia, G. On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B Chem. 2008, 129, 750–757. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Leidinger, M.; Sauerwald, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective detection of hazardous VOCs for indoor air quality applications using a virtual gas sensor array. J. Sens. Sens. Syst. 2014, 3, 253–263. [Google Scholar] [CrossRef]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Ho, C.K.; Itamura, M.T.; Kelley, M.; Hughes, R.C. Review of Chemical Sensors for In-Situ Monitoring of Volatile Contaminants; Sandia Natl. Lab.: Albuquerque, NM, USA, 2001.
- Szulczyński, B.; Gębicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4, 21. [Google Scholar] [CrossRef]
- Ion Science/Product Details/MiniPID Photoionisation Detection Sensor. Available online: http://www.ionscience.com/products/minipid-photoionisation-detection-sensor (accessed on 24 June 2013).
- piD-TECH®eVx Photoionization Sensor. Available online: http://products.baseline-mocon.com/Asset/piDTECH%20eVx%20Data%20SheetD039.2.pdf (accessed on 2 February 2015).
- piD-TECH plus® Photoionization Sensors on Baseline-MOCON, Inc. Available online: http://products.baseline-mocon.com/viewitems/oem-sensors-detectors/pid-tech-plus-photoionization-sensors (accessed on 19 September 2013).
- Alphasense PID-AH Photo Ionisation Detector. Available online: http://www.alphasense.com/WEB1213/wp-content/uploads/2014/09/PID-AH.pdf (accessed on 6 February 2015).
- Dräger Multi-PID 2. Available online: http://www.draeger.com/sites/en_uk/Pages/Chemical-Industry/Draeger-Multi-PID-2.aspx (accessed on 19 February 2015).
- HNU Portable Analyzer Technology & Specifications. Available online: http://www.hnu.com/pdf/PortableAnalyzerTechnology_Specs514.pdf (accessed on 14 December 2015).
- VOC-TRAQ, USB Toxic Gas Detector & Data Logger. Available online: http://products.baseline-mocon.com/Asset/D029.6-VOC-TRAQ.pdf (accessed on 14 June 2015).
- CUB® Instrument User Manual V1.9. Available online: http://www.geotechenv.com/pdf/air_quality/ion_science_cub.pdf (accessed on 20 February 2015).
- Tiger Select Instrument User Manual V2.5. Available online: http://www.ionscience.com/assets/files/brochures/PhoCheck%20Tiger%20V1.9.pdf (accessed on 14 June 2015).
- GrayWolf’s DirectSense TVOC Advanced, Portable, Total Volatile Organic Compound PID Meter (VOC Monitor). Available online: http://www.wolfsense.com/directsense-tvoc-volatile-organic-compound-meter.html (accessed on 2 February 2015).
- UltraRAE 3000—Benzene Specific Monitor—Ribble Enviro Ltd. Available online: http://www.ribble-enviro.co.uk/includes/files/products/14_1_UltraRAE_3000_US_Datasheet.pdf (accessed on 2 February 2015).
- ppbRAE 3000 User’s Guide. Available online: http://www.ribble-enviro.co.uk/includes/files/products/12_2_ppbRAE3000_manual.pdf (accessed on 14 June 2015).
- Lias, S.G.; United States, National Bureau of Standards. Gas.-Phase Ion and Neutral Thermochemistry; The American Chemical Society and the American Institute of Physics for the National Bureau of Standards: New York, NY, USA, 1988.
- Peng, F.M.; Xie, P.H.; Shi, Y.G.; Wang, J.D.; Liu, W.Q.; Li, H.Y. Photoionization Detector for Portable Rapid GC. Chromatographia 2007, 65, 331–336. [Google Scholar] [CrossRef]
- Kumar, R.V.; Iwahara, H. Solid electrolytes. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2000; Volume 28, pp. 131–185. ISBN 0168-1273. [Google Scholar]
- Jacquinot, P.; Hodgson, A.W.E.; Hauser, P.C.; Müller, B.; Wehrli, B. Amperometric detection of gaseous ethanol and acetaldehyde at low concentrations on an Au–Nafion electrode. Analyst 1999, 124, 871–876. [Google Scholar] [CrossRef]
- Kumar, R.V.; Fray, D.J. Development of solid-state hydrogen sensors. Sens. Actuators 1988, 15, 185–191. [Google Scholar] [CrossRef]
- Wiegleb, G. Industrielle Gassensorik: Messverfahren-Signalverarbeitung-Anwendungstechnik-Prüfkriterien; Expert-Verlag: Renningen-Malmsheim, Germany, 2001. [Google Scholar]
- Mori, M.; Sadaoka, Y. Potentiometric VOC detection at sub-ppm levels based on YSZ electrolyte and platinum electrode covered with gold. Sens. Actuators B Chem. 2010, 146, 46–52. [Google Scholar] [CrossRef]
- Nagai, T.; Tamura, S.; Imanaka, N. Solid electrolyte type ammonia gas sensor based on trivalent aluminum ion conducting solids. Sens. Actuators B Chem. 2010, 147, 735–740. [Google Scholar] [CrossRef]
- Knake, R.; Hauser, P.C. Sensitive electrochemical detection of ozone. Anal. Chim. Acta 2002, 459, 199–207. [Google Scholar] [CrossRef]
- Ono, M.; Shimanoe, K.; Miura, N.; Yamazoe, N. Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry. Sens. Actuators B Chem. 2001, 77, 78–83. [Google Scholar] [CrossRef]
- Ono, M.; Shimanoe, K.; Miura, N.; Yamazoe, N. Amperometric sensor based on NASICON and NO oxidation catalysts for detection of total NOx in atmospheric environment. Solid State Ion. 2000, 136–137, 583–588. [Google Scholar] [CrossRef]
- Miura, N.; Lu, G.; Ono, M.; Yamazoe, N. Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode. Solid State Ion. 1999, 117, 283–290. [Google Scholar] [CrossRef]
- Katulski, R.J.; Namiesnik, J.; Stefanski, J.; Sadowski, J.; Wardencki, W.; Szymanska, K. Mobile monitoring system for gaseous air pollution. Metrol. Meas. Syst. 2009, 16, 667–682. [Google Scholar]
- Gerboles, M.; Buzica, D. Evaluation of Micro-Sensors to Monitor Ozone in Ambient Air; European Commision, Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2009. [Google Scholar]
- Helm, I.; Jalukse, L.; Leito, I. Measurement Uncertainty Estimation in Amperometric Sensors: A Tutorial Review. Sensors 2010, 10, 4430–4455. [Google Scholar] [CrossRef] [PubMed]
- Gębicki, J.; Kloskowski, A. Electrochemical Sensor for Measurement of Volatile Organic Compounds Employing Square Wave Perturbation Voltage. Metrol. Meas. Syst. 2010, 17, 637–649. [Google Scholar] [CrossRef]
- 3ETO CiTiceL. Available online: http://www.citytech.com/PDF-Datasheets/3eto.pdf (accessed on 18 February 2015).
- 4ETO CiTiceL ®. Available online: http://www.citytech.com/PDF-Datasheets/4eto.pdf (accessed on 18 February 2015).
- 7ETO CiTiceL ®. Available online: http://www.citytech.com/PDF-Datasheets/7eto.pdf (accessed on 18 February 2015).
- ETO-A1 Ethylene Oxide Sensor. Available online: http://www.alphasense.com/WEB1213/wp-content/uploads/2016/06/ETO-A1.pdf (accessed on 28 November 2016).
- ETO-B1 Ethylene Oxide Sensor. Available online: http://www.alphasense.com/WEB1213/wp-content/uploads/2015/02/ETOB1.pdf (accessed on 28 November 2016).
- Specification Sheet for Ethylene Oxide Sensor Type ETO/M-10. Available online: http://www.membrapor.com/sheet/ETO-M-10.pdf (accessed on 28 November 2016).
- Specification Sheet for Ethylene Oxide Sensor Type ETO/C-20. Available online: www.membrapor.ch/sheet/ETO-C-20.pdf (accessed on 28 November 2016).
- EC4-10-ETO Industrial Ethylene Oxide Sensor. Available online: https://sgx.cdistore.com/datasheets/e2v/DS-0201%20(EC4-10-ETO%20Datasheet)%20V2.pdf (accessed on 28 November 2016).
- Kida, T.; Minami, T.; Yuasa, M.; Shimanoe, K.; Yamazoe, N. Organic gas sensor using BiCuVOx solid electrolyte. Electrochem. Commun. 2008, 10, 311–314. [Google Scholar] [CrossRef]
- Kida, T.; Minami, T.; Kishi, S.; Yuasa, M.; Shimanoe, K.; Yamazoe, N. Planar-type BiCuVOx solid electrolyte sensor for the detection of volatile organic compounds. Sens. Actuators B Chem. 2009, 137, 147–153. [Google Scholar] [CrossRef]
- Mori, M.; Nishimura, H.; Itagaki, Y.; Sadaoka, Y.; Traversa, E. Detection of sub-ppm level of VOCs based on a Pt/YSZ/Pt potentiometric oxygen sensor with reference air. Sens. Actuators B Chem. 2009, 143, 56–61. [Google Scholar] [CrossRef]
- Mori, M.; Nishimura, H.; Itagaki, Y.; Sadaoka, Y. Potentiometric VOC detection in air using 8YSZ-based oxygen sensor modified with SmFeO3 catalytic layer. Sens. Actuators B Chem. 2009, 142, 141–146. [Google Scholar] [CrossRef]
- Kida, T.; Morinaga, N.; Kishi, S.; An, K.-M.; Sim, K.-W.; Chae, B.-Y.; Kim, J.; Ryu, B.-K.; Shimanoe, K. Electrochemical detection of volatile organic compounds using a Na3Zr2Si2PO12/Bi2Cu0.1V0.9O5.35 heterojunction device. Electrochim. Acta 2011, 56, 7484–7490. [Google Scholar] [CrossRef]
- Knake, R.; Jacquinot, P.; Hauser, P. Amperometric detection of gaseous formaldehyde in the ppb range. Electroanalysis 2001, 13, 631–634. [Google Scholar] [CrossRef]
- Sekhar, P.K.; Subramaniyam, K. Detection of Harmful Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) Vapors Using Electrochemical Gas Sensors. ECS Electrochem. Lett. 2014, 3, B1–B4. [Google Scholar] [CrossRef]
- Kida, T.; Nishiyama, A.; Yuasa, M.; Shimanoe, K.; Yamazoe, N. Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sens. Actuators B Chem. 2009, 135, 568–574. [Google Scholar] [CrossRef]
- Abbas, M.N.; Moustafa, G.A.; Gopel, W. Multicomponent analysis of some environmentally important gases using semiconductor tin oxide sensors. Anal. Chim. Acta 2001, 431, 181–194. [Google Scholar] [CrossRef]
- Kohler, H.; Rober, J.; Link, N.; Bouzid, I. New applications of tin oxide gas sensors: I. Molecular identification by cyclic variation of the working temperature and numerical analysis of the signals. Sens. Actuators B Chem. 1999, 61, 163–169. [Google Scholar] [CrossRef]
- Bärsan, N.; Ionescu, R.; Vancu, A. Calibration curve for SnO2-based gas sensors. Sens. Actuators B Chem. 1994, 19, 466–469. [Google Scholar] [CrossRef]
- Jerger, A.; Kohler, H.; Becker, F.; Keller, H.B.; Seifert, R. New applications of tin oxide gas sensors: II. Intelligent sensor system for reliable monitoring of ammonia leakages. Sens. Actuators B Chem. 2002, 81, 301–307. [Google Scholar] [CrossRef]
- Vergara, A.; Martinelli, E.; Huerta, R.; D’Amico, A.; Di Natale, C. Orthogonal decomposition of chemo-sensory cues. Sens. Actuators B Chem. 2011, 159, 126–134. [Google Scholar] [CrossRef]
- Aleixandre, M.; Sayago, I.; Horrillo, M.C.; Fernández, M.J.; Arés, L.; Garcı́a, M.; Santos, J.P.; Gutiérrez, J. Analysis of neural networks and analysis of feature selection with genetic algorithm to discriminate among pollutant gas. Sens. Actuators B Chem. 2004, 103, 122–128. [Google Scholar] [CrossRef]
- Kadosaki, M.; Terasawa, T.; Tanino, K.; Tatuyama, C. Exploration of Highly Sensitive Oxide Semiconductor Materials to Indoor-Air Pollutants. IEEJ Trans. Sens. Micromach. 1999, 119, 383–389. [Google Scholar] [CrossRef]
- Kadosaki, M.; Yamazaki, S.; Fujiki, S.; Tanino, K.; Tatsuyama, C. Development of SnO2-based Gas Sensors for Detection of Volatile Organic Compounds. IEEJ Trans. Sens. Micromach. 2001, 121, 395–401. [Google Scholar] [CrossRef]
- Kadosaki, M. Development of VOC Sensors for Prevention of Sick-house Symptom. Ceram. Jpn. 2003, 38, 439–443. [Google Scholar]
- Cabot, A.; Arbiol, J.; Cornet, A.; Morante, J.R.; Chen, F.; Liu, M. Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films 2003, 436, 64–69. [Google Scholar] [CrossRef]
- Schweizer-Berberich, M.; Strathmann, S.; Sharma, R.; Peyre-Lavigne, A. Filters for tin dioxide CO gas sensors to pass the UL2034 standard. Sens. Actuators B 2000, 66, 34–36. [Google Scholar] [CrossRef]
- Gentry, S.J.; Jones, T.A. The role of catalysis in solid-state gas sensors. Sens. Actuators 1986, 10, 141–163. [Google Scholar] [CrossRef]
- Craven, M.A.; Gardner, J.W.; Bartlett, P.N. Electronic noses—Development and future prospects. TrAC Trends Anal. Chem. 1996, 15, 486–493. [Google Scholar] [CrossRef]
- Capone, S.; Siciliano, P.; Bârsan, N.; Weimar, U.; Vasanelli, L. Analysis of CO and CH4 gas mixtures by using a micromachined sensor array. Sens. Actuators B Chem. 2001, 78, 40–48. [Google Scholar] [CrossRef]
- Suzuki, K.; Takada, T. Highly sensitive odour sensors using various SnO2 thick films. Sens. Actuators B Chem. 1995, 25, 773–776. [Google Scholar] [CrossRef]
- Wen, Z.; Tian-mo, L. Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Phys. B Condens. Matter 2010, 405, 1345–1348. [Google Scholar] [CrossRef]
- Gajdošík, L. The concentration measurement with gas sensor operated in the dynamic regime. Sens. Actuators B Chem. 2005, 106, 691–699. [Google Scholar] [CrossRef]
- Williams, R.; Kaufman, A.; Garvey, S. Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report; EPA: Washington, DC, USA, 2015. [Google Scholar]
- Pyta, H.; Pawlowski, M. Application of Semiconductive Chemical Sensors to Control the Concentration of Benzene in the Air. Inzynieria Ochr. Srodowiska 2007, 10, 105–116. [Google Scholar]
- AQM 60—Aeroquals Volatile Organic Sensor Types. Available online: http://www.aeroqual.com/wp-content/uploads/Aeroquals-Volatile-organic-sensor-types.pdf (accessed on 5 April 2017).
- AppliedSensor Sweden AB, D. 11, SE-583 35 Linköping, Sweden Applied Sensors, iAQ-100. Available online: http://www.appliedsensor.com/products/ (accessed on 16 November 2011).
- AppliedSensor Sweden AB, D. 11, SE-583 35 Linköping, Sweden Applied Sensors, iAQ-2000. Available online: http://www.appliedsensor.com/products/ (accessed on 16 November 2011).
- AppliedSensor Sweden AB, D. 11, SE-583 35 Linköping, Sweden Applied Sensors, Indoor Air Quality Module-iAQ-engine. Available online: http://www.appliedsensor.com/products/ (accessed on 16 November 2011).
- AppliedSensor Sweden AB, D. 11, SE-583 35 Linköping, Sweden Applied Sensors, AS-MLV. Available online: http://www.appliedsensor.com/products/ (accessed on 16 November 2011).
- Figaro, P. Information TGS 2201—For Detection of Gasoline and Diesel Exhaust Gas. Figaro Engineering Inc.: Osaka, Japan. Available online: http://www.figaro.co.jp/en/product/ (accessed on 22 March 2012).
- Figaro, P. Information TGS 2600—For the detection of Air Contaminants, FIGARO ENGINEERING INC. 1-5-11 Senba-nishi, Mino, Osaka 562-8505 JAPAN. Available online: http://www.figaro.co.jp/en/product/docs/tgs2600_product_information_rev02.pdf (accessed on 13 September 2011).
- Figaro, P. Information TGS 2602—For the Detection of Air Contaminants, FIGARO ENGINEERING INC. 1-5-11 Senba-nishi, Mino, Osaka 562-8505 JAPAN. Available online: http://www.figaro.co.jp/en/product/docs/tgs2602_product%20infomation%28en%29_rev03.pdf (accessed on 13 September 2011).
- TGS 822—For the Detection of Organic Solvent Vapors, FIGARO ENGINEERING INC. 1-5-11 Senba-Nishi, Mino, Osaka 562-8505 JAPAN. Available online: http://www.figarosensor.com/products/822pdf.pdf (accessed on 4 February 2015).
- FIS Inc. FIS GAS SENSOR SP3-AQ2 for AIR QUALITY CONTROLS (VOCs). Available online: http://www.fisinc.co.jp/en/common/pdf/SP3SAQ201E_P.pdf (accessed on 18 October 2011).
- MiCS-5121 CO/VOC Sensor, e2v Technologies (UK) Limited 2008, July 2008. Available online: https://sgx.cdistore.com/datasheets/e2v/mics-5121.pdf (accessed on 4 February 2015).
- MiCS-5521 CO/VOC Sensor, e2v Technologies (UK) Limited 2008, July 2008. Available online: https://sgx.cdistore.com/datasheets/e2v/mics-5521.pdf (accessed on 4 February 2015).
- USB Demo Kit for VZ-87, SGX, LLC, 53 Mountain Boulevard, Warren, NJ 07059, USA. Available online: http://www.sgxsensortech.com/content/uploads/2015/01/140903-User-Manual-USB-demo-kit-IAQS-SGX-ver1.2-US.pdf (accessed on 19 February 2015).
- Gas Sensor Element GGS 1330T, UST Umweltsensortechnik GmbH, Dieselstrasse 2 und 4, 98716 Geschwenda, Germany. Available online: http://www.gassensor.ru/data/pdf/ust/GGS-1330.pdf (accessed on 13 June 2015).
- Gas Sensor Element GGS 2330T, UST Umweltsensortechnik GmbH, Dieselstrasse 2 und 4, 98716 Geschwenda, Germany. Available online: http://www.gassensor.ru/data/pdf/ust/GGS-2330.pdf (accessed on 13 June 2015).
- Gas Sensor Element GGS 3330T, UST Umweltsensortechnik GmbH, Dieselstrasse 2 und 4, 98716 Geschwenda, Germany. Available online: http://www.gassensor.ru/data/pdf/ust/GGS-3330.pdf (accessed on 14 June 2015).
- Gas Sensor Element GGS 8330T, UST Umweltsensortechnik GmbH, Dieselstrasse 2 und 4, 98716 Geschwenda, Germany. Available online: http://www.gassensor.ru/data/pdf/ust/GGS-8330.pdf (accessed on 13 June 2015).
- Synkera Technologies, Inc. 2605 Trade Centre Ave., Ste. C, Longmont, CO 80503 UltraKeraTM TO VOC Sensor P/N 731. Available online: http://www.synkerainc.com/images/pdf/UltraKera%20TO%20VOC%20Sensor%20(731).pdf (accessed on 20 February 2015).
- Sens-It Thick Film Solid State Sensors for Environmental Air Quality Monitoring, UNITEC s.r.l., VIA A. VOLTA, 25/B, 35030 VEGGIANO (PD)—ITALY. Available online: http://www.unitec-srl.com/site/wp-content/uploads/2015/04/SENS-IT-Datasheet.pdf (accessed on 19 December 2016).
- Mabrook, M.; Hawkins, P. Benzene Sensing Using Thin Films of Titanium Dioxide Operating at Room Temperature. Sensors 2002, 2, 374–382. [Google Scholar] [CrossRef]
- Tamaki, J. High Sensitivity Semiconductor Gas Sensors. Sens. Lett. 2005, 3, 89–98. [Google Scholar] [CrossRef]
- Elmi, I.; Dori, L.; Cardinali, G.C.; Nicoletti, S.; Guerri, S.; Zampolli, S.; Mastrogiacomo, A.R.; Lanzi, E.; Poluzzi, V. Trace benzene monitoring in the outdoor air: Comparative results between measurements carried out with an innovative approach and a std. GC tool. In Transducers '01 Eurosensors XV; Obermeier, P.D.-I.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1706–1709. ISBN 978-3-540-42150-4. [Google Scholar]
- Kanda, K. Development of a WO3 Thick Film Based Sensor for the Detection of VOC. Chem. Sens. 2004, 20 (Suppl. B), 294–295. [Google Scholar] [CrossRef]
- Ke, M.-T.; Lee, M.-T.; Lee, C.-Y.; Fu, L.-M. A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer. Sensors 2009, 9, 2895–2906. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Liu, T.; Wang, Z. Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 43, 633–638. [Google Scholar] [CrossRef]
- Kadosaki, M.; Sakai, Y.; Tamura, I.; Matsubara, I.; Itoh, T. Development of an oxide semiconductor thick film gas sensor for the detection of total volatile organic compounds. Electron. Commun. Jpn. 2010, 93, 34–41. [Google Scholar] [CrossRef]
- Gramm, A.; Schütze, A. High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification. Sens. Actuators B Chem. 2003, 95, 58–65. [Google Scholar] [CrossRef]
- Kropf, S.; Backhaus, K.; Erichson, B.; Plinke, W.; Und Weiber, R. Multivariate Analysemethoden. Eine anwendungsorientierte Einführung. Biom. J. 1997, 39, 877–878. [Google Scholar] [CrossRef]
- Baur, T.; Schütze, A.; Sauerwald, T. Optimierung des temperaturzyklischen Betriebs von Halbleitergassensoren. Tm-Tech. Mess. 2015, 82, 187–195. [Google Scholar] [CrossRef]
- Schultealbert, C.; Baur, T.; Schütze, A.; Böttcher, S.; Sauerwald, T. A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors. Sens. Actuators B Chem. 2017, 239, 390–396. [Google Scholar] [CrossRef]
- Kohl, D.; Kelleter, J.; Petig, H. Detection of Fires by Gas Sensors. Sens. Update 2001, 9, 161–223. [Google Scholar] [CrossRef]
- Puglisi, D.; Eriksson, J.; Bur, C.; Schuetze, A.; Lloyd Spetz, A.; Andersson, M. Catalytic metal-gate field effect transistors based on SiC for indoor air quality control. J. Sens. Sens. Syst. 2015, 4, 1–8. [Google Scholar] [CrossRef]
- Bur, C.; Bastuck, M.; Puglisi, D.; Schütze, A.; Spetz, A.L.; Andersson, M. Discrimination and Quantification of Volatile Organic Compounds in the ppb-Range with Gas Sensitive SiC-Field Effect Transistors. Procedia Eng. 2014, 87, 604–607. [Google Scholar] [CrossRef]
- Kanda, K.; Maekawa, T. Development of a WO3 thick-film-based sensor for the detection of VOC. Sens. Actuators B Chem. 2005, 108, 97–101. [Google Scholar] [CrossRef]
- Allouch, A.; Le Calvé, S.; Serra, C.A. Portable, miniature, fast and high sensitive real-time analyzers: BTEX detection. Sens. Actuators B Chem. 2013, 182, 446–452. [Google Scholar] [CrossRef]
- Horiuchi, T.; Ueno, Y.; Camou, S.; Haga, T.; Tate, A. Portable Aromatic VOC Gas Sensor for Onsite Continuous Air Monitoring with 10-ppb Benzene Detection Capability. NTT Tech. Rev. 2006, 1, 30–37. [Google Scholar]
- Camou, S.; Horiuchi, T.; Haga, T. Ppb level benzene gas detection by portable BTX sensor based on integrated hollow fiber detection cell. In Proceedings of the 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October 2006; pp. 235–238. [Google Scholar]
- Silva, L.I.B.; M-Costa, A.; Freitas, A.C.; Rocha-Santos, T.A.P.; Duarte, A.C. Polymeric nanofilm-coated optical fibre sensor for speciation of aromatic compounds. Int. J. Environ. Anal. Chem. 2009, 89, 183–197. [Google Scholar] [CrossRef]
- Maruo, Y.Y.; Nakamura, J. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies. Anal. Chim. Acta 2011, 702, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Camou, S.; Tamechika, E.; Horiuchi, T. Portable Sensor for Determining Benzene Concentration from Airborne/liquid Samples with High Accuracy. NTT Tech. Rev. 2012, 10, 1–7. [Google Scholar]
- Terry, S.C.; Jerman, J.H.; Angell, J.B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron. Devices 1979, 26, 1880–1886. [Google Scholar] [CrossRef]
- Lahlou, H.; Vilanova, X.; Correig, X. Gas phase micro-preconcentrators for benzene monitoring: A review. Sens. Actuators B Chem. 2013, 176, 198–210. [Google Scholar] [CrossRef]
- HAPSITE ER Chemical Identification System—INFICON. Available online: http://products.inficon.com/en-us/product/detail/hapsite-er-identification-system?path=products/pg-chemicaldetection (accessed on 10 April 2015).
- HAPSITE Smart Plus Chemical Identification System—INFICON. Available online: http://products.inficon.com/en-us/product/detail/hapsite-smart-plus-chemical-identification-system?path=products/pg-chemicaldetection (accessed on 10 April 2015).
- FemtoScan Corporation. Available online: http://www.femtoscan.com/analcap.htm (accessed on 22 April 2015).
- Explorer Portable Gas Chromatograph—INFICON. Available online: http://products.inficon.com/en-us/nav-products/Product/Detail/Explorer-Portable-Gas-Chromatograph?path=Products%2Fpg-ChemicalDetection (accessed on 8 April 2015).
- FROG-4000, Defiant Technologies, 6814A Academy Parkway W NE, Albuquerque, NM 87109-4406. Available online: http://www.defiant-tech.com/pdfs/FROG-4000%20Product%20Brief3.pdf (accessed on 23 February 2015).
- Model 4600 Portable zNose—Electronic Sensor Technology. Available online: http://www.estcal.com/products/model4600_portable_znose.html (accessed on 15 December 2015).
- Model 312 Portable GC, PID Analyzers—Home of the HNU, PID ANALYZERS, LLC, 2 Washington Circle, Sandwich, MA 02563, USA. Available online: http://www.hnu.com/index.php?view=Portable&cmd=Home&referrer=ihsglobalspec (accessed on 13 December 2015).
- Chromatographe Portable—GC COMPANION—EPA—Environnement Process et Analyse. Available online: http://www.epanalyse.com/analyseurs/analyseurs-detecteurs-portables/chromatographe-portable-gc-companion.html (accessed on 15 December 2015).
- Bentekk|Produc. Available online: http://www.bentekk.com/en/product/ (accessed on 3 July 2015).
- μRAID Overview—Ion Mobility Spectrometry (IMS), Personal Chemical Detector|Bruker Corporation. Available online: https://www.bruker.com/products/cbrne-detection/ims/uraid/overview.html (accessed on 23 April 2015).
- RAID M100 Technical Details—Ion Mobility Spectrometry (IMS), Chemical Agent Detector|Bruker Corporation. Available online: https://www.bruker.com/products/cbrne-detection/ims/raid-m100/technical-details.html (accessed on 1 June 2015).
- Statheropoulos, M.; Agapiou, A.; Georgiadou, A. Analysis of expired air of fasting male monks at Mount Athos. J. Chromatogr. B 2006, 832, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Marć, M.; Tobiszewski, M.; Zabiegała, B.; de la Guardia, M.; Namieśnik, J. Current air quality analytics and monitoring: A review. Anal. Chim. Acta 2015, 853, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Halliday, J.; Lewis, A.C.; Hamilton, J.F.; Rhodes, C.; Bartle, K.D.; Homewood, P.; Grenfell, R.J.P.; Goody, B.; Harling, A.; Brewer, P.; et al. Lab-on-a-chip GC for environmental research. LC GC Eur. 2010, 23, 514–523. [Google Scholar]
- Sanchez, J.-B.; Berger, F.; Fromm, M.; Nadal, M.-H. A selective gas detection micro-device for monitoring the volatile organic compounds pollution. Sens. Actuators B Chem. 2006, 119, 227–233. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Cardinali, G.C.; Masini, L.; Zani, A.; Severi, M.; Betti, P.; Dalcanale, E. A palm-sized gas-chromatographic system for sub-ppb VOC detection in air quality monitoring applications. In Proceedings of the 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October 2006; pp. 1163–1166. [Google Scholar]
- Zampolli, S.; Betti, P.; Elmi, I.; Dalcanale, E. A supramolecular approach to sub-ppb aromatic VOC detection in air. Chem. Commun. 2007, 2790–2792. [Google Scholar] [CrossRef] [PubMed]
- Zampolli, S.; Elmi, I.; Mancarella, F.; Betti, P.; Dalcanale, E.; Cardinali, G.C.; Severi, M. Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph. Sens. Actuators B Chem. 2009, 141, 322–328. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G.C.; Nicoletti, S.; Dori, L. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B Chem. 2004, 101, 39–46. [Google Scholar] [CrossRef]
- Huang, G.; Gao, L.; Duncan, J.; Harper, J.D.; Sanders, N.L.; Ouyang, Z.; Cooks, R.G. Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer. J. Am. Soc. Mass Spectrom. 2010, 21, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tsow, F.; Campbell, K.D.; Iglesias, R.; Forzani, E.; Tao, N.J. A wireless hybrid chemical sensor for detection of environmental volatile organic compounds. IEEE Sens. J. 2013, 13, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Bae, B.; Kim, J.; Yeom, J.; Chen, Q.; Ray, C.; Shannon, M. Development of a Portable Gas Analyzer Using a Micro-Gas Chromatograph/Flame Ionization Detector (Micro-GC/FID) for NASA’s Environmental Missions; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012. [Google Scholar]
- Kim, S.K.; Chang, H.; Zellers, E.T. Microfabricated Gas Chromatograph for the Selective Determination of Trichloroethylene Vapor at Sub-Parts-Per-Billion Concentrations in Complex Mixtures. Anal. Chem. 2011, 83, 7198–7206. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Burris, D.R.; Chang, H.; Bryant-Genevier, J.; Zellers, E.T. Microfabricated Gas Chromatograph for On-Site Determination of Trichloroethylene in Indoor Air Arising from Vapor Intrusion. 1. Field Evaluation. Environ. Sci. Technol. 2012, 46, 6065–6072. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Burris, D.R.; Bryant-Genevier, J.; Gorder, K.A.; Dettenmaier, E.M.; Zellers, E.T. Microfabricated Gas Chromatograph for On-Site Determinations of TCE in Indoor Air Arising from Vapor Intrusion. 2. Spatial/Temporal Monitoring. Environ. Sci. Technol. 2012, 46, 6073–6080. [Google Scholar] [CrossRef] [PubMed]
- Bryant-Genevier, J.; Scholten, K.; Kim, S.K.; Zellers, E.T. Multivariate curve resolution of co-eluting vapors from a gas chromatograph with microsensor array detector. Sens. Actuators B Chem. 2014, 202, 167–176. [Google Scholar] [CrossRef]
- Bryant-Genevier, J.; Zellers, E.T. Toward a microfabricated preconcentrator-focuser for a wearable micro-scale gas chromatograph. J. Chromatogr. A 2015, 1422, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, R.; Person, V.; Serra, C.A.; Le Calvé, S. Development of a novel portable miniaturized GC for near real-time low level detection of BTEX. Sens. Actuators B Chem. 2016, 224, 159–169. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef]
- Röck, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Kim, Y.T.; Huh, J.-S.; Lee, D.-D. Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition. Thin Solid Films 2002, 416, 271–278. [Google Scholar] [CrossRef]
- Srivastava, A.K. Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network. Sens. Actuators B Chem. 2003, 96, 24–37. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G.; Aversa, P.; Antolini, F.; Cusano, A.; Consales, M.; Giordano, M.; Nicolais, L. Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sens. Actuators B Chem. 2005, 111–112, 171–180. [Google Scholar] [CrossRef]
- Han, L.; Shi, X.; Wu, W.; Kirk, F.L.; Luo, J.; Wang, L.; Mott, D.; Cousineau, L.; Lim, S.I.-I.; Lu, S.; et al. Nanoparticle-structured sensing array materials and pattern recognition for VOC detection. Sens. Actuators B Chem. 2005, 106, 431–441. [Google Scholar] [CrossRef]
- Wolfrum, E.J.; Meglen, R.M.; Peterson, D.; Sluiter, J. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens. Actuators B Chem. 2006, 115, 322–329. [Google Scholar] [CrossRef]
- ISO 16000-29:2014—Indoor Air—Part 29: Test Methods for VOC Detectors. Available online: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=55227 (accessed on 28 November 2016).
- Hazardous Gas Monitors: A Practical Guide to Selection, Operation, and Applications by Chou, Jack: McGraw-Hill Professional 9780071358767 1st Edition.—Better World Books. Available online: https://www.abebooks.com/Hazardous-Gas-Monitors-Practical-Guide-Selection/16785662684/bd (accessed on 13 January 2017).
Model | Manufacturer | LoD for Benzene, ppm | Sensitivity for IBE, V/ppm | Selectivity, Known Interferents | Stability, Drift | Range for IBE, ppm | t90, s | |
---|---|---|---|---|---|---|---|---|
[15] | ppb MiniPiD white | Ion Science | 0.5 | 0.025 | VOCs with IP lower than the lamp output are detected. Interference from humidity and temperature | calibration periodicity < 1 month | 0.001–40 | 2 |
[16] | piD-TECH eVx Blue 045-014 | Baseline-Mocon | 0.25 | 1.125 | 0.0005–2 | a few seconds | ||
[17] | piD-TECH plus, 043-235 | Baseline-Mocon | 2.5 | 0.125 | 0–20 | <5 | ||
[18] | PID-AH for VOCs | Alphasense LTD | 0.5 | >0.020 | 0.0005–50 | <3 | ||
[19] | Multi-PID 2 | Dräger | 0.050 | Not relevant | Benzene absorption tube | No data | 0.100–2000 | 3 |
[20] | Model 102+ | PID Analysers | 0.001 | Not relevant | All VOCs with IP < 9.6, 10.2 or 11.7 eV | No data | 0.001–20 | 1 |
[21] | VOC-Traq | Baseline-Mocon | 0.005 | Not relevant | VOCs with IP < 10.6 eV | No data | 0.010–20 | 10 |
[22] | Club | Ion Science | 0.0005 | Not relevant | All VOCs with IP < 10.0 eV | No data | 0.001–5000 | 13 |
[23] | Tiger Select benzene | Ion Science | 0.010 (resolution 0.001) | Not relevant | Use benzene pre-filter | No data | 0.001–5000 | <2 |
[24] | AdvancedSense DirectSens IAQ | Graywolf | 0.0025 | Not relevant | VOCs with IP < 10.6 eV | No data | 0.005–20 | <60 |
[25] | UltraRAE 3000 | RAE Systems | 50 | Not relevant | 9.8 eV lamp and benzene tube | No data | 0.050–200 (benzene) | 60 |
[26] | ppbRAE 3000 | RAE Systems | Resolution 1 with 10.6 eV lamp | VOCs with IP < 10.6/9.8 eV | No data | 0.001–10 | 2 |
Model | Supplier | LoD, ppm | Sensitivity, μA/ppm | Selectivity, Known Interferents | Stability, Drift in ppm | Range, ppm | t90, s | |
---|---|---|---|---|---|---|---|---|
[43] | 3ETO CiTiceL | City Technology | 0.1 (Resolution) | 2.75 ± 0.5 | CO, HC, and VOCs | Zero: 2, Baseline: 0–1, Span: <5%/year | 0–20 | <140 |
[44] | 4ETO CiTiceL | City Technology | 0.1 (Resolution) | 1.9 ± 0.5 | VOCs in general | Zero: 4, Baseline: 0–3, Span: <5%/year | 0–20 | <120 |
[45] | 7ETO CiTiceL | City Technology | 0.1 (Resolution) | 2.25 ± 0.65 | Ethanol ≈ 55%; MEK ≈ 10%; Toluene ≈ 20%; CO ≈ 40% | Zero: 2, Baseline: 0–1, Span: <5%/year | 0–20 | <140 |
[46] | ETO-A1 | Alphasense LTD | 0.1 | 2.0 to 3.2 | The bias voltage is set for ETO and needs adjusting for other VOCs | No data | 0–100 | <150 |
[47] | ETO-B1 | Alphasense LTD | 0.1 | 2.0 to 3.2 | No data | 0–100 | <150 | |
[48] | ETO/M-10 | MembraporAG | 0.05 (Resolution) | 2.0 ± 0.5 | Zero: no data, Baseline: 0–1, Span: <2%/month | 0–10 | <140 | |
[49] | ETO/C-20 | Membrapor AG | 0.1 (Resolution) | 2.5 ± 0.6 | Interference evaluated for a list of VOCs | Zero: no data, Baseline: 0–1, Span: <2%/month | 0–20 | <140 |
[50] | EC4-10-ETO | SGX Sensortech | 0.1 (Resolution) | 1.9 ± 0.8 | CO, HC, and VOCs | Zero: −0.2–2.5 μA, Baseline: 0–2, Span: <2%/month | 0–10 | <120 |
Models | Manufacturers | LoD, ppm | Sensitivity log(Rs/R0)/log(ppm) | Selectivity, Known Interferents | Stability, Drift | Range, ppm | t90, s | |
---|---|---|---|---|---|---|---|---|
[78] | VM | Aeroqual | Res.: 0.001 | No data | negative response with oxidising gases, positive response with combustible gases | No data | 0–25 | 60 |
[79] | iAQ-100 | AppliedSensor | VOC + CO2: 350 | No data | alcohols, aldehydes, aliphatic hydrocarbons, amines, aromatic HC, CO, CH4, LPG, Ketones, Organic acids | No data | VOC + CO2: 350–2000 | 15 min |
[80] | iAQ-2000 | „ | No data | No data | No data | CO2: 450–2000 | 15 min | |
[81] | iAQ-engine | „ | CO2: 450 | No data | No data | CO2: 450–2000 | 15 min | |
[82] | AS-MLV | „ | About 1 | No data | No data | CO2: 450–2000 | seconds | |
[83] | TGS 2201 | FIGARO USA | i-butane: <1 | i-butane: −0.26 | CO, H2, CH3OH, other HC, with similar sensitivity, NO2, SO2 and H2S according to load resistance | No data | i-butane: 2–100 | No data |
[84] | TGS 2600 | „ | i-butane: <1 | i-butane: −0.24 | CH4, CO, i-butane, Et-OH, (CH3)2CO, H2 | No data | i-butane: 1–100 | No data |
[85] | TGS 2602 | „ | toluene: <1 | Toluene: −0.6 | No data | toluene: 1–30 | No data | |
[85] | TGS 8100 | „ | toluene: <1 | i-butane: −0.14 | No data | i-butane: 1–30 | No data | |
[86] | TGS 822 | „ | benzene: <50 | Benzene: −0.67 | CH4, CO, i-butane, n-hexane, ethanol, acetone | No data | benzene: 50–5000 | No data |
[87] | SP3_AQ2 | FIS | <1 | CO: −0.4 | VOCs | No data | EtOH: 0.1 to 100 | No data |
[88,89] | MICS-5121/5521 | SGX Sensortech | No data | CO: −0.59 | reducing gases such as CO, HC and VOCs | No data | CO: 1–1000 | No data |
[90] | MICS-VZ-87 | SGX Sensortech | No data | CO: −0.59 | VOCs and CO2 | No data | CO2: 400–1000 | 15 min |
[91] | GGS 1330T | UST Umwelt-sensortechnik | No data | CH4: −0.186 | H2 and CO | No data | CH4: −0–1000 | No data |
[92] | GGS 2330T | „ | No data | CO: −0.361 | CH4 hydrogen and alcohol | No data | CO: 0–1000 | No data |
[93] | GGS 3330T | „ | No data | CH4: −0.227 | C1-C8 hydrocarbon, CO and H2 | No data | CH4: −0–1000 | No data |
[94] | GGS 8330T | UST Umwelt-sensortechnik | No data | EtOH: −0.227 | CH4, CO and H2 | No data | EtOH: 0–1000 | No data |
[95] | VOC Sensor (P/n 731) | Synkera Technologies | No data | EtOH: −1.166 | Isobutylene (200%), CO (30%), H2 (10%), CH4 (2%), NO2 Negative Resp. CH2O (0%) | No data | EtOH: 75–700 | <60 |
[96] | SENS 3000, SENS-IT, ETL2000 | Unitec Srl | Resolution: 0.1 μg/m3! | No data | No data | <2.5%/6 months | benzene: 0–0.030 | <3 |
Target Gas | Sensitive Layer | LoD, ppm | Response Time | Year | |
---|---|---|---|---|---|
[99] | BTX | Au-SnO2 MOx + pre-concentrator | 1–3 | - | 2001 |
[97] | Benzene | TiO2 | 10 | 35 s | 2002 |
[111] | Aromatics | Pd-WO3 at 400 °C | Toluene: 0.010–1.000 | 2004 | |
[101] | Benzene | WO3 | 0.2 | 20 s | 2009 |
[74] | methanol, ethanol, acetone and formaldehyde (VOCs) | SnO2–TiO2 doped with Ag | For ethanol about 10 | 20 s | 2010 |
[102] | methanol, ethanol, formaldehyde, and acetone (VOCs) | SnO2 doped with TiO2 | A few 10 s | 10–20 s | 2010 |
[103] | TVOC | SnO2 doped with TiO2 | toluene: 0.5 | No data | 2010 |
Target Gas | Principle | LoD, ppb | Response Time, min | Year | |
---|---|---|---|---|---|
[113] | Benzene | Absorption/desorption/UV detection | 10 | 60 | 2006 |
[114,117] | Benzene, Toluene, Xylene | Absorption/desorption/UV detection | 1 and 0.3 | 30 | 2006, 2012 |
[115] | Benzene | Reflexion light | 2.5 | 30 | 2009 |
Model | Manufacturer | LoD, ppm | Selectivity, Known Interferents | Stability, Drift | Range, ppm | t90, s | |
---|---|---|---|---|---|---|---|
[126] | Model 312 | PID Analysers | 0.0005 for benzene | According to the selectivity of the GC columns. Generally this is not a problem for BETX and other VOCs | <1% over 24 h | 0.0005–10000 | 1 |
[124] | Frog 4000 | Defiant Technologies | A few ppb | No data | ppb range | 300 | |
[125] | zNose, model 4600 | Electronic Sensor Technology | A few ppb | No data | ppb range | 30 | |
[128] | Gas Chromatography in your hand | Bentekk | 0.025, on-going improvement to 0.015 | No data | No data | 30 | |
[123] | Explorer Portable GC, | INFICON | 0.005 | No data | 0.005–9999 | No data | |
[120] | HapSite ER | INFICON | ppt depending on configuration | No data | ppt to ppm | 600 | |
[121] | HapSite smart/smart plus | INFICON | high ppt depending on configuration | No data | high ppt to ppm | 900 | |
[122] | model EVM II | FemtoScan | 0.539 | Separation by GC of alkanes, cyclo-alkanes, alkenes, alcohols, aromatics, ketones, esters | No data | No data | <30 |
[127] | GC Companion | Epananalyse | 0.001–0.002 of benzene | Separation by GC | No data | No data | No data |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. https://doi.org/10.3390/s17071520
Spinelle L, Gerboles M, Kok G, Persijn S, Sauerwald T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors. 2017; 17(7):1520. https://doi.org/10.3390/s17071520
Chicago/Turabian StyleSpinelle, Laurent, Michel Gerboles, Gertjan Kok, Stefan Persijn, and Tilman Sauerwald. 2017. "Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds" Sensors 17, no. 7: 1520. https://doi.org/10.3390/s17071520
APA StyleSpinelle, L., Gerboles, M., Kok, G., Persijn, S., & Sauerwald, T. (2017). Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors, 17(7), 1520. https://doi.org/10.3390/s17071520