Applications and Advances in Bioelectronic Noses for Odour Sensing
Abstract
:1. Introduction
2. Biological Recognition Elements
2.1. The Use of Whole Cell Expressing Olfactory Receptors in Bioelectronic Nose
2.2. The Use of Olfactory Receptor Proteins in Bioelectronic Nose
2.3. The Use of OBPs in Bioelectronic Nose
3. Production and Immobilization of ORs as Sensing Elements
3.1. Production of ORs
3.2. Immobilization of ORs
4. Applications of Bioelectronic Nose
4.1. Applications in Medical Diagnosis
4.2. Applications in Food Quality Control
4.3. Applications in Environmental Monitoring
4.4. Applications in Smell Visualization and Standardization
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Huey, N.A.; Broering, L.C.; Jutze, G.A.; Gruber, C.W. Objective odor pollution control investigations. J. Air Pollut. Control. Assoc. 1960, 10, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.; Bartlett, P.N. Sensors and Sensory Systems for an Electronic Nose; Springer Science and Business Media: Berlin, Germany, 1992. [Google Scholar]
- Gardner, J.W. Detection of vapours and odours from a multisensor array using pattern recognition Part 1. Principal component and cluster analysis. Sens. Actuators B Chem. 1991, 4, 109–115. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [PubMed]
- Lieberzeit, P.; Rehman, A.; Najafi, B.; L Dickert, F. Real-life application of a QCM-based e-nose: Quantitative characterization of different plant-degradation processes. Anal. Bioanal. Chem. 2008, 391, 2897–2903. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.R. Surface acoustic wave devices and applications. Ultrasonics 1973, 11, 121–131. [Google Scholar] [CrossRef]
- Lu, Y.; Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Pang, W.; Zhang, H.; Zhang, D.; Duan, X. Detection of volatile organic compounds using microfabricated resonator array functionalized with supramolecular monolayers. ACS Appl. Mater. Interfaces 2015, 7, 17893–17903. [Google Scholar] [CrossRef] [PubMed]
- Gerard, M. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Lee, C.S.; Kim, S.K.; Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 2009, 9, 7111–7131. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kwon, O.S.; Song, H.S.; Park, S.J.; Sung, J.H.; Jang, J.; Park, T.H. Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 2012, 33, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, S.H.; Lee, J.; Song, H.S.; Oh, E.H.; Park, T.H.; Hong, S. Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv. Mater. 2009, 21, 91–94. [Google Scholar] [CrossRef]
- Kwon, O.S.; Song, H.S.; Park, S.J.; Lee, S.H.; An, J.H.; Park, J.W.; Yang, H.; Yoon, H.; Bae, J.; Park, T.H.; et al. An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Lett. 2015, 15, 6559–6567. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kwon, O.S.; Lee, S.H.; Song, H.S.; Park, T.H.; Jang, J. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 2012, 12, 5082–5090. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ivic, L.; Otaki, J.M.; Hashimoto, M.; Mikoshiba, K.; Firestein, S. Functional expression of a mammalian odorant receptor. Science 1998, 279, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, L. Odorant Binding Protein and Olfactory Receptors: Plausible Role as Detectors in an Odorant Biosensor. Master’s Thesis, School of Chemistry, Department of Organic Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, 2011. [Google Scholar]
- Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Sela, L.; Sobel, N. Human olfaction: A constant state of change-blindness. Exp. Brain Res. 2010, 205, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, B.R.; Mitala, J.J.; Josue, J.; Castro, A.; Lerner, M.B.; Bayburt, T.H.; Khamis, S.M.; Jones, R.; Brand, J.G.; Sligar, S.G.; et al. Biomimetic chemical sensors using nanoelectronic read out of olfactory receptor proteins. ACS Nano 2011, 5, 5408–5416. [Google Scholar] [CrossRef] [PubMed]
- Di Pietrantonio, F.; Benetti, M.; Cannatà, D.; Verona, E.; Palla-Papavlu, A.; Fernández-Pradas, J.M.; Serra, P.; Staiano, M.; Varriale, A.; D’Auria, S. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosens. Bioelectron. 2015, 67, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.H.; Lee, S.H.; Ko, H.J.; Park, T.H. Odorant detection using liposome containing olfactory receptor in the SPR system. Sens. Actuators B Chem. 2014, 198, 188–193. [Google Scholar] [CrossRef]
- Gopel, W.; Ziegler, C.; Breer, H.; Schild, D.; Apfelbach, R.; Joerges, J.; Malaka, R. Bioelectronic noses: A status report. Biosens. Bioelectron. 1998, 13, 479–493. [Google Scholar] [CrossRef]
- Oh, E.H.; Song, H.S.; Park, T.H. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb. Technol. 2011, 48, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wu, C.; Liu, Q.; Huang, L.; Wang, P. Recent advances in olfactory receptor-based biosensors. Biosens. Bioelectron. 2013, 42, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Crasto, C.; Marenco, L.; Miller, P.; Shepherd, G. Olfactory Receptor Database: A metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res. 2002, 30, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors 2011, 11, 1105–1176. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Z. A piezoelectric biosensor as an olfactory receptor for odour detection: Electronic nose. Biosens. Bioelectron. 1999, 14, 9–18. [Google Scholar] [CrossRef]
- Sung, J.H.; Ko, H.J.; Park, T.H. Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens. Bioelectron. 2006, 21, 1981–1986. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Ko, H.J.; Lee, S.H.; Park, T.H. Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb. Technol. 2006, 39, 375–380. [Google Scholar] [CrossRef]
- Lee, S.H.; Lim, J.H.; Park, J.; Hong, S.; Park, T.H. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosens. Bioelectron. 2015, 71, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Lim, J.H.; Park, J.; Oh, E.H.; Son, M.; Hong, S.; Park, T.H. Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain. Sens. Actuators B Chem. 2015, 210, 9–16. [Google Scholar] [CrossRef]
- Ko, H.J.; Park, T.H. Piezoelectric olfactory biosensor: Ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens. Bioelectron. 2005, 20, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Lee, S.H.; Kim, T.H.; Park, J.; Song, H.S.; Park, T.H.; Hong, S. Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens. Bioelectron. 2012, 35, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Park, J.; Ahn, J.H.; Jin, H.J.; Hong, S.; Park, T.H. A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens. Bioelectron. 2013, 39, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, H.; Zhuang, S.; Zhang, D.; Zhang, Q.; Zhou, J.; Dong, S.; Liu, Q.; Wang, P. Olfactory biosensor using odorant-binding proteins from honeybee: Ligands of floral odors and pheromones detection by electrochemical impedance. Sens. Actuators B Chem. 2014, 193, 420–427. [Google Scholar] [CrossRef]
- Saberi, M.; Seyed-allaei, H. Odorant receptors of Drosophila are sensitive to the molecular volume of odorants. Sci. Rep. 2016, 6, 25103. [Google Scholar] [CrossRef] [PubMed]
- Vidic, J. Bioelectronic noses based on olfactory receptors. Intell. Biosens. 2010, 377–386. [Google Scholar]
- Tucker, C.L.; Fields, S. A yeast sensor of ligand binding. Nat. Biotechnol. 2001, 19, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Fukutani, Y.; Nakamura, T.; Yorozu, M.; Ishii, J.; Kondo, A.; Yohda, M. The N-terminal replacement of an olfactory receptor for the development of a yeast-based biomimetic odor sensor. Biotechnol. Bioeng. 2012, 109, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Terziyska, A.; Waltschewa, L.; Venkov, P. A new sensitive test based on yeast cells for studying environmental pollution. Environ. Pollut. 2000, 109, 43–52. [Google Scholar] [CrossRef]
- Walmsley, R.M.; Keenan, P. The eukaryote alternative: Advantages of using yeasts in place of bacteria in microbial biosensor development. Biotechnol. Bioprocess. Eng. 2000, 5, 387–394. [Google Scholar] [CrossRef]
- Rodríguez Seguí, S.; Pla, M.; Minic, J.; Pajot-Augy, E.; Salesse, R.; Hou, Y.; Jaffrezic-Renault, N.; Mills, C.A.; Samitier, J.; Errachid, A. Detection of olfactory receptor I7 self-assembled multilayer formation and immobilization using a quartz crystal microbalance. Anal. Lett. 2006, 39, 1735–1745. [Google Scholar] [CrossRef] [Green Version]
- Corin, K.; Baaske, P.; Geissler, S.; Wienken, C.J.; Duhr, S.; Braun, D.; Zhang, S. Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Sci. Rep. 2011, 1, 172. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Lee, S.H.; Kwon, O.S.; Song, H.S.; Oh, E.H.; Park, T.H.; Jang, J. Polypyrrole nanotubes conjugated with human olfactory receptors: High-performance transducers for FET-type bioelectronic noses. Angew. Chem. Int. Ed. Engl. 2009, 48, 2755–2758. [Google Scholar] [CrossRef] [PubMed]
- Vidic, J.M.; Grosclaude, J.; Persuy, M.A.; Aioun, J.; Salesse, R.; Pajot-Augy, E. Quantitative assessment of olfactory receptors activity in immobilized nanosomes: A novel concept for bioelectronic nose. Lab Chip 2006, 6, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lim, J.H.; Jin, H.J.; Namgung, S.; Lee, S.H.; Park, T.H.; Hong, S. A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 2012, 137, 3249–3254. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Park, J.; Oh, E.H.; Ko, H.J.; Hong, S.; Park, T.H. Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv. Healthc. Mater. 2014, 3, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Bioelectronic nose: Current status and perspectives. Biosens. Bioelectron. 2017, 87, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, B.Y.; Jaworski, J.; Yokoyama, K.; Chung, W.J.; Wang, E.; Hong, S.; Majumdar, A.; Lee, S.W. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano 2011, 5, 2824–2830. [Google Scholar] [CrossRef] [PubMed]
- Hang, Q.Z.; Hang, D.Z.; Nantao, L.I.; Yanli, L.U.; Ao, Y.Y.; Shuang, L.I. Zinc Nanoparticles-equipped bioelectronic nose using a microelectrode array for odorant detection. Anal. Sci. 2016, 32, 387–393. [Google Scholar]
- Lu, Y.; Yao, Y.; Zhang, Q.; Zhang, D.; Zhuang, S.; Li, H.; Liu, Q. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens. Bioelectron. 2015, 67, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Huotari, M.J. Biosensing by insect olfactory receptor neurons. Sens. Actuators B Chem. 2000, 71, 212–222. [Google Scholar] [CrossRef]
- Liu, Q.; Ye, W.; Xiao, L.; Du, L.; Hu, N.; Wang, P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens. Bioelectron. 2010, 25, 2212–2217. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ye, W.; Hu, N.; Cai, H.; Yu, H.; Wang, P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens. Bioelectron. 2010, 26, 1672–1678. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Ko, H.J.; Park, T.H. Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens. Bioelectron. 2009, 25, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Hague, C.; Uberti, M.A.; Chen, Z.; Bush, C.F.; Jones, S.V.; Ressler, K.J.; Hall, R.A.; Minneman, K.P. Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 13672–13676. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.L.; Ernberg, K.E.; Chung, H.; Zhang, S. Study of a synthetic human olfactory receptor 17-4: Expression and purification from an inducible mammalian cell line. PLoS ONE 2008, 3, e2920. [Google Scholar] [CrossRef] [PubMed]
- Leck, K.J.; Zhang, S.; Hauser, C.A.E. Study of bioengineered zebra fish olfactory receptor 131-2: Receptor purification and secondary structure analysis. PLoS ONE 2010, 5, e15027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, L.; Graveland-Bikker, J.; Steuerwald, D.; Vanberghem, M.; Herlihy, K.; Zhang, S. Efficient cell-free production of olfactory receptors: Detergent optimization, structure, and ligand binding analyses. Proc. Natl. Acad. Sci. USA 2008, 105, 15726–15731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Panigrahi, S.; Mallik, S. Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens. Actuators B Chem. 2011, 155, 8–18. [Google Scholar] [CrossRef]
- Katzen, F.; Chang, G.; Kudlicki, W. The past, present and future of cell-free protein synthesis. Trends Biotechnol. 2005, 23, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Früh, V.; IJzerman, A.P.; Siegal, G. How to catch a membrane protein in action: A review of functional membrane protein immobilization strategies and their applications. Chem. Rev. 2011, 111, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Fernández-Lorente, G.; Abian, O.; Fernández-Lafuente, R.; Guisán, J.M. Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules 2000, 1, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Seo, J.H.; Kim, C.S.; Kwon, Y.; Ha, J.H.; Choi, S.S.; Cha, H.J. A comparative study on antibody immobilization strategies onto solid surface. Korean J. Chem. Eng. 2013, 30, 1934–1938. [Google Scholar] [CrossRef]
- Hou, Y.; Helali, S.; Zhang, A.; Jaffrezic-Renault, N.; Martelet, C.; Minic, J.; Gorojankina, T.; Persuy, M.A.; Pajot-Augy, E.; Salesse, R.; et al. Immobilization of rhodopsin on a self-assembled multilayer and its specific detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2006, 21, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Vidic, J.M.; Pla-Roca, M.; Grosclaude, J.; Persuy, M.A.; Monnerie, R.; Caballero, D.; Errachid, A.; Hou, Y.; Jaffrezic-Renault, N.; Salesse, R.; et al. Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal. Chem. 2007, 79, 3280–3290. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lai, H.H.; Bachman, M.; Sims, C.E.; Li, G.P.; Allbritton, N.L. Covalent micropatterning of poly(dimethylsiloxane) by photografting through a mask. Anal. Chem. 2005, 77, 7539–7546. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kobayashi, M.; Furui, K.; Soh, N.; Nakano, K.; Imato, T. Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction. Anal. Chim. Acta 2006, 576, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Esteban, S.; Gil, J.; Castillo, J.R. A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 2006, 68, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Oh, B.K.; Lee, W.H.; Choi, J.W. Immobilization of antibody fragment for immunosensor application based on surface plasmon resonance. Colloids Surf. B. Biointerfaces 2005, 40, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Panigrahi, S.; Mallik, S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens. Bioelectron. 2011, 26, 3103–3109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhi, J. Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode. Electrochem. Commun. 2006, 8, 1811–1816. [Google Scholar] [CrossRef]
- Lin, Y.J.; Guo, H.R.; Chang, Y.H.; Kao, M.T.; Wang, H.H.; Hong, R.I. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem. 2001, 76, 177–180. [Google Scholar] [CrossRef]
- Son, M.; Kim, D.; Kang, J.; Lim, J.H.; Lee, S.H.; Ko, H.J.; Hong, S.; Park, T.H. Bioelectronic nose using odorant binding protein-derived peptide and carbon nanotube field-effect transistor for the assessment of Salmonella contamination in food. Anal. Chem. 2016, 88, 11283–11287. [Google Scholar] [CrossRef] [PubMed]
- Son, M.; Cho, D.G.; Lim, J.H.; Park, J.; Hong, S.; Ko, H.J.; Park, T.H. Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance. Biosens. Bioelectron. 2015, 74, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.H.; Lee, S.H.; Lee, S.H.; Ko, H.J.; Park, T.H. Cell-based high-throughput odorant screening system through visualization on a microwell array. Biosens. Bioelectron. 2014, 53, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.H.; Lee, S.H.; Ko, H.J.; Lim, J.H.; Park, T.H. Coupling of olfactory receptor and ion channel for rapid and sensitive visualization of odorant response. Acta Biomater. 2015, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, Y.; Choi, S. Applications and technology of electronic nose for clinical diagnosis. Open J. Appl. Biosens. 2013, 2, 39–50. [Google Scholar] [CrossRef]
- Turner, C.; Walton, C.; Hoashi, S.; Evans, M. Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath Res. 2009, 3, 1752–1755. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectra fingerprints, detection limit. Sensors 2009, 9, 8230–8262. [Google Scholar] [CrossRef] [PubMed]
- Van den Velde, S.; Quirynen, M.; van Hee, P.; van Steenberghe, D. Halitosis associated volatiles in breath of healthy subjects. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 853, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Dummer, J.; Storer, M.; Swanney, M.; McEwan, M.; Scott-Thomas, A.; Bhandari, S.; Chambers, S.; Dweik, R.; Epton, M. Analysis of biogenic volatile organic compounds in human health and disease. Trends Anal. Chem. 2011, 30, 960–967. [Google Scholar] [CrossRef]
- Phillips, M.; Gleeson, K.; Hughes, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, W.P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933. [Google Scholar] [CrossRef]
- Dummer, J.; Storer, M.; Hu, W.; Swanney, M.; Milne, G.; Frampton, C.; Scotter, J.; Prisk, G.; Epton, M. Accurate, reproducible measurement of acetone concentration in breath using selected ion flow tube-mass spectrometry. J. Breath Res. 2010, 4, 046001. [Google Scholar] [CrossRef] [PubMed]
- Lindinger, W.; Hansel, A.; Jordan, A. Proton-transfer-reaction mass spectrometry (PTR-MS): On-Line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 1998, 27, 347–354. [Google Scholar] [CrossRef]
- Koo, W.T.; Choi, S.J.; Kim, S.J.; Jang, J.S.; Tuller, H.L.; Kim, I.D. Heterogeneous sensitization of metal–organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 2016, 138, 13431–13437. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Zhu, F.; Ma, X.; Cao, Z.; Cao, Z.W.; Li, Y.; Li, Y.X.; Chen, Y.Z. Mechanisms of drug combinations: Interaction and network perspectives. Nat. Rev. Drug Discov. 2009, 8, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed]
- Concina, I.; Falasconi, M.; Gobbi, E.; Bianchi, F.; Musci, M.; Mattarozzi, M.; Pardo, M.; Mangia, A.; Careri, M.; Sberveglieri, G. Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control 2009, 20, 873–880. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sankaran, S.; Mallik, S.; Gaddam, B.; Hanson, A.A. Olfactory receptor-based polypeptide sensor for acetic acid VOC detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.; Slater, C.; Kiernan, B.; Dunphy, C.; Guo, W.; Lau, K.T.; Diamond, D. A wireless sensor network for methane monitoring. In Proceedings of the International Society for Optics and Photonics, Boston, MA, USA, 25 September 2007; pp. 675504–675508. [Google Scholar]
- Valente, R.J.; Imhoff, R.E.; Tanner, R.L.; Meagher, J.F.; Daum, P.H.; Hardesty, R.M.; Banta, R.M.; Alvarez, R.J.; McNider, R.T.; Gillani, N.V. Ozone production during an urban air stagnation episode over Nashville, Tennessee. J. Geophys. Res. 1998, 103, 22555–22568. [Google Scholar] [CrossRef]
- De Vito, S.; Massera, E.; Piga, M.; Martinotto, L.; Di Francia, G. On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B Chem. 2008, 129, 750–757. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Severin, E.J.; Doleman, B.J.; Lewis, N.S. An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors. Anal. Chem. 2000, 72, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.J.; Park, T.H. Bioelectronic nose and its application to smell visualization. J. Biol. Eng. 2016, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, X.A.; Cooksey, G.A.; Votaw, S.V.; Horowitz, L.F.; Folch, A. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip 2010, 10, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Redmond, T.M.; Ren, X.; Kubish, G.; Atkins, S.; Low, S.; Uhler, M.D. Microarray transfection analysis of transcriptional regulation by cAMP-dependent protein kinase. Mol. Cell. Proteom. 2004, 3, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Dacres, H.; Wang, J.; Leitch, V.; Horne, I.; Anderson, A.R.; Trowell, S.C. Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET). Biosens. Bioelectron. 2011, 29, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Suslick, K.S. An optoelectronic nose: “seeing” smells by means of colorimetric sensor arrays. MRS Bull. 2004, 29, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.J.; Lim, J.H.; Oh, E.H.; Park, T.H. Applications and perspectives of bioelectronic nose. In Bioelectronic Nose; Park, T.H., Ed.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014; pp. 263–283. [Google Scholar]
- Liu, J.; Fu, T.M.; Cheng, Z.; Hong, G.; Zhou, T.; Jin, L.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C.; et al. Syringe-injectable electronics. Nat. Nanotechnol. 2015, 10, 629–636. [Google Scholar]
- Son, M.; Lee, J.Y.; Ko, H.J.; Park, T.H. Bioelectronic nose: An emerging tool for odor standardization. Trends Biotechnol. 2017, 35, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Prospects of ionic liquids application in electronic and bioelectronic nose instruments. Trends Anal. Chem. 2017, 93, 23–36. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- White, S.P.; Dorfman, K.D.; Frisbie, C.D. Label-free DNA sensing platform with low-voltageelectrolyte-gated transistors. Anal. Chem. 2015, 87, 1861–1866. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.K.; Park, T.J.; Kim, K.L.; Cho, S.M.; Jeong, B.J.; Park, C. Organic one-transistor-type nonvolatile memory gated with thin ionic liquid-polymer film for low voltage operation. ACS Appl. Mater. Interfaces 2014, 6, 20179–20187. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Lee, Y.; Heath, J.; Kim, M. Applications of Animal Biosensors: A Review. IEEE Sens. J. 2015, 15, 637–645. [Google Scholar]
- Briand, L.; Eloit, C.; Nespoulous, C.; Bézirard, V.; Huet, J.C.; Henry, C.; Blon, F.; Trotier, D.; Pernollet, J.C. Evidence of an odorant-binding protein in the human olfactory mucus: Location, structural characterization, and odorant-binding properties. Biochemistry 2002, 41, 7241–7252. [Google Scholar] [CrossRef] [PubMed]
- Pavlidou, M.; Hänel, K.; Möckel, L.; Willbold, D. Nanodiscs allow phage display selection for ligands to non-linear epitopes on membrane proteins. PLoS ONE 2013, 8, e72272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Inventor | Object of the Invention | Ref. |
---|---|---|---|
1998 | Gopel et al. | Concept of bioelectronic nose | [22] |
1999 | Wu | A piezoelectric electrode used in the immobilization of a crude bullfrog cilia as a signal transducer | [27] |
2006 | Lee | SPR system to characterize molecular interaction between olfactory receptor and its cognate odour molecule | [29] |
2005 | Ko & Park | Whole cell-based QCM sensor system for selective recognition of odorant molecules | [32] |
2006 | Sung et al. | A crude membrane expressing an olfactory protein was used for measuring odorants using a quartz crystal microbalance (QCM) | [28] |
2011 | Goldsmith et al. | Biomimetic chemical sensors using nanoelectronic read out of olfactory receptor proteins | [19] |
2012 | Park et al. | Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose | [14] |
2012 | Jin et al. | Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction | [33] |
2013 | Lim et al. | Peptide receptor-based bioelectronic nose for the real-time measurement | [34] |
2014 | Oh et al. | Odorant detection using liposome containing olfactory receptor in the SPR system | [21] |
2014 | Lu et al. | Olfactory biosensor using odorant-binding proteins from honeybee | [35] |
2015 | Di et al. | A surface acoustic wave bioelectronic nose for detection of volatile odorant molecules | [20] |
Sensor Type | Analytes | Sensitivity | Ref. |
---|---|---|---|
Olfactory receptor proteins(ORPs) from bullfrogs (Rana spp.) coated onto the surface of a piezoelectric (PZ) electrode | n-caproic acid, isoamyl acetate, n-decyl alcohol, linalool, ethyl caporate | 10−6–10−7 g | [27] |
Quartz crystal microbalance (QCM) was coated with ODR-10 receptor (C. elegans) | Diacetyl | - | [28] |
hOR 2AG1 (hOR2AG1) conjugated carboxylated polypyrrole nanotubes (CPNTs) field-effect transistors (FETs) | Amyl butyrate | 10 fM | [44] |
Trinitrotoluene (TNT) receptors bound to conjugated polydiacetylene (PDA) polymers with single-walled carbon nanotube field-effect transistors (SWNTFET) | Trinitrotoluene | 1 fM | [49] |
A liquid-ion gated FET B-nose using human olfactory receptors 2AG1 (hOR2AG1: OR)-conjugated modified bilayer graphene (MBLG) | Amyl butyrate | 0.04 fM | [14] |
An olfactory-nanovesicle-fused carbon-nanotube-transistor biosensor(OCB) with canine ORs(cfOR5269) | Hexanal | 1 fM | [46] |
Single-walled carbon nanotube-based FETs (SWNT-FETs) with human OR 2AG1 (hOR2AG1) | Amyl butyrate | 1 fM | [33] |
Single walled-carbon nanotube field-effect transistors (SWNT-FETs) functionalized with olfactory receptor-derived peptides (ORPs) | Trimethylamine | 10 fM | [34] |
Nanovesicle-based bioelectronic nose (NvBN) with 30 types of human olfactory receptors (hORs) | Heptanal | 10 fM | [47] |
Multiplexed superbioelectronic nose (MSB-nose) using graphene micropatterns (GMs) and field-effect transistor (FET) with two different hORs (hOR2AG1 and hOR3A1) | Amyl butylate, helional | 0.1 fM | [13] |
Olfactory receptor-derived peptides(ORP)-coated Single-walled carbon nanotube-field effect transistors (SWNT-FETs) based on a novel microfluidic system (μBN) | Trimethylamine | 10 ppt | [30] |
An array of five Surface acoustic wave (SAW) resonators coated with three types of odorant-binding proteins (OBPs): the wild-type OBP from bovine (wtbOBP), a double-mutant of the OBP from bovine (dmbOBP), the wild-type OBP from pig (wtpOBP) | R-(–)-1-octen-3-ol (octenol), R-(–)-carvone (carvone) | 0.48 ppm 0.74 ppm | [20] |
Human olfactory receptor (OR) nanovesicle integrated single-walled carbon nanotubes field-effect transistors (SWNT-FETs) | 1-octen-3-ol | 1 fM | [31] |
Zinc Nanoparticles (NanoZn) equipped biosensor based on olfactory receptor cells bombined with Zinc Nanoparticles (MEA) | Isoamyl acetate, acetic acid | 10−15 M | [50] |
Methods | Advantages | Disadvantages |
---|---|---|
Extracts from tissue or cells | Native structures and functions, native intracellular connections, suitable for physical absorption | Poor reproducible isolation and reconstitution yield of ORs, hard to purify specific ORs, strict storage requirements, need to kill animals |
Cell-based expression | Nature membrane for ORs, Grafting of tags, single type of ORs | Low expression efficiency, relatively expensive, time consuming |
Cell-free production | High efficiency and purity, controllable reaction conditions | High technique-demanding, relatively high cost |
Chemical synthesis | Stable secondary structure, low cost and high purity, site-specific modification | Limited by yields in the range of about 70 amino acids, hard to maintain domains, depend on right sequences |
Methods | Advantages | Disadvantages |
---|---|---|
Physical adsorption | Regent-free/low cost, simple to perform, non-destructive toward ORs | Insufficient binding strength, nonspecific adsorption, low stability |
Self-assembly with specific antibodies | Higher specificity/affinity, higher stability, minimizing additional purification processes | unsuitability for sandwich assays, additional process for antibody immobilization |
Covalent binding | Strong/irreversible binding force, high uniformity, controlled immobilization | Longer incubation time, conformational changes, loss of ligand specificity |
Application Fields | Transducer Type | OR Type | Immobilization Methods | Analytes | Sensitivity | Ref. |
---|---|---|---|---|---|---|
Medical diagnosis | SWNT-FET | HEK-293 cells expressing hORs | Self-assembly of CNT-vesicles | Heptanal | 10 fM | [47] |
Quartz crystals array | ORs docking with odorants-simulating synthetic peptide | - | Trimethylamine, Dimethylamine, Monomethylamine, Ammonia | Accuracy 86.78% | [74] | |
Food quality control | QCM | OBP-derived synthetic peptide for alcohol binding | Au–S bonding | Alcohol | <5 ppm | [72] |
CNT-FET | OBP-derived synthetic peptide for alcohol binding | π–π stacking interactions | 3-methyl-1-butanol | 1 fM | [75] | |
Environmental monitoring | SWNT-FET | Peptide receptor-PDA vesicles | Self-assembly of CNT-vesicles | Trinitrotoluene | 1 fM | [49] |
SWNT-FET | Nanovesicles carrying hOR51S1, hOR3A4 | Self-assembly of CNT-vesicles | Geosmin, 2-methylisoborneol | 10 ng·L−1 10 ng·L−1 | [76] | |
Smell visualization | PEG microwell-based CRE reporter assay | HEK-293 cells expressing hORs | - | Helional | 50 nM | [77] |
Fluorescence image scanning | HEK-293 cells expressing ion channel-fused hORs | - | Amyl butyrate | 2 nM | [78] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dung, T.T.; Oh, Y.; Choi, S.-J.; Kim, I.-D.; Oh, M.-K.; Kim, M. Applications and Advances in Bioelectronic Noses for Odour Sensing. Sensors 2018, 18, 103. https://doi.org/10.3390/s18010103
Dung TT, Oh Y, Choi S-J, Kim I-D, Oh M-K, Kim M. Applications and Advances in Bioelectronic Noses for Odour Sensing. Sensors. 2018; 18(1):103. https://doi.org/10.3390/s18010103
Chicago/Turabian StyleDung, Tran Thi, Yunkwang Oh, Seon-Jin Choi, Il-Doo Kim, Min-Kyu Oh, and Moonil Kim. 2018. "Applications and Advances in Bioelectronic Noses for Odour Sensing" Sensors 18, no. 1: 103. https://doi.org/10.3390/s18010103
APA StyleDung, T. T., Oh, Y., Choi, S. -J., Kim, I. -D., Oh, M. -K., & Kim, M. (2018). Applications and Advances in Bioelectronic Noses for Odour Sensing. Sensors, 18(1), 103. https://doi.org/10.3390/s18010103