Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. QCM Fabrication
2.3. Synthesis of MIP Thin Films
2.4. Synthesis of MIP Nanoparticles
2.5. QCM Measurement
3. Results and Discussion
3.1. Increasing Sensitivity of BSA MIP Thin Films
- BSA as a reference value for the MIP thin film—MIP (BSA).
- NIP nanoparticles to assess the contribution of increased film surface area—MIP (NP–NIP).
- MIP nanoparticles directly after synthesis, i.e., still containing the template—MIP (NP–MIP–BSA).
- Washed MIP nanoparticles—MIP (NP–MIP–wash).
3.2. On the Way to MIP-Based Protein Assays
4. Conclusions
- Stamps comprising unwashed BSA MIP NPs can be utilized as templates instead of BSA to generate surface imprints on polymer thin films. The resulting layers—MIP (MIP–NP–BSA)—give rise to two times higher QCM sensor responses than corresponding MIP (BSA).
- At higher BSA concentrations, the protein can be utilized to bind MIP NPs to MIP thin film surfaces. In principle, this makes MIP-based, biomimetic assays possible where NPs are utilized for amplifying the sensor signals from binding.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, L.X.; Wang, X.Y.; Lu, W.H.; Wu, X.Q.; Li, J.H. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, G.; Lieberzeit, P. Mip sensors on the way to real-world applications. In Designing Receptors for the Next Generation of Biosensors; Piletsky, S.A., Whitcombe, M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 12, pp. 167–187. [Google Scholar]
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Haupt, K. Molecularly imprinted polymers: The next generation. Anal. Chem. 2003, 75, 376A–383A. [Google Scholar] [CrossRef] [PubMed]
- Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem. 2017, 8, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates—A way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 1995, 34, 1812–1832. [Google Scholar] [CrossRef]
- Mujahid, A.; Dickert, F.L. Molecularly imprinted polymers: Principle, design, and enzyme-like catalysis. In Molecularly Imprinted Catalysts; Elsevier: Amsterdam, The Netherlands, 2016; Volume 11, pp. 79–101. [Google Scholar]
- Hussain, M.; Kotova, K.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors 2016, 16, 1011. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Cao, S.S.; Whitcombe, M.J.; Piletsky, S.A. Size matters: Challenges in imprinting macromolecules. Prog. Polym. Sci. 2014, 39, 145–163. [Google Scholar] [CrossRef]
- Phan, N.; Sussitz, H.; Lieberzeit, P. Polymerization parameters influencing the QCM response characteristics of BSA MIP. Biosensors 2014, 4, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Bossi, A.; Bonini, F.; Turner, A.P.F.; Piletsky, S.A. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron. 2007, 22, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
- Eersels, K.; Lieberzeit, P.; Wagner, P. A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques-from principles to applications. ACS Sens. 2016, 1, 1171–1187. [Google Scholar] [CrossRef]
- Turner, N.W.; Jeans, C.W.; Brain, K.R.; Allender, C.J.; Hlady, V.; Britt, D.W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog. 2006, 22, 1474–1489. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hong, M.; Miaomiao; Bin, Q.; Lin, Z.; Cai, Z.; Chen, G. Novel composites of multifunctional Fe3O4@Au nanofibers for highly efficient glycoprotein imprinting. J. Mater. Chem. B 2013, 1, 1044–1051. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B Chem. 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Reddy, S.M.; Phan, Q.T.; El-Sharif, H.; Govada, L.; Stevenson, D.; Chayen, N.E. Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers. Biomacromolecules 2012, 13, 3959–3965. [Google Scholar] [CrossRef] [PubMed]
- Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors 2014, 14, 13863–13912. [Google Scholar] [CrossRef] [PubMed]
- Tai, D.-F.; Lin, C.-Y.; Wu, T.-Z.; Chen, L.-K. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal. Chem. 2005, 77, 5140–5143. [Google Scholar] [CrossRef] [PubMed]
- Urbakh, M.; Tsionsky, V.; Gileadi, E.; Daikhin, L. Probing the solid/liquid interface with the quartz crystal microbalance. In Piezoelectric Sensors; Janshoff, A., Steinem, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 111–149. [Google Scholar]
- Wei, S.; Jakusch, M.; Mizaikoff, B. Capturing molecules with templated materials—Analysis and rational design of molecularly imprinted polymers. Anal. Chim. Acta 2006, 578, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Lieberzeit, P.; Afzal, A.; Rehman, A.; Dickert, F. Nanoparticles for detecting pollutants and degradation processes with mass-sensitive sensors. Sens. Actuators B Chem. 2007, 127, 132–136. [Google Scholar] [CrossRef]
- Kraus-Ophir, S.; Witt, J.; Wittstock, G.; Mandler, D. Nanoparticle-imprinted polymers for size-selective recognition of nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Lieberzeit, P.A.; Jungmann, C.; Schranzhofer, L. Molecular imprinting on the nanoscale—Rapid detection of Ag nanoparticles by QCM sensors. Procedia Eng. 2014, 87, 236–239. [Google Scholar] [CrossRef]
- Findeisen, A.; Wackerlig, J.; Samardzic, R.; Pitkanen, J.; Anttalainen, O.; Dickert, F.L.; Lieberzeit, P.A. Artificial receptor layers for detecting chemical and biological agent mimics. Sens. Actuators B Chem. 2012, 170, 196–200. [Google Scholar] [CrossRef]
- Schirhagl, R.; Podlipna, D.; Lieberzeit, P.A.; Dickert, F.L. Comparing biomimetic and biological receptors for insulin sensing. Chem. Commun. 2010, 46, 3128–3130. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Hlady, V.; Britt, D. Langmuir monolayer approaches to protein recognition through molecular imprinting. Biosens. Bioelectron. 2005, 20, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.Q.; Bligh, S.W.A.; Tao, L.; Quan, J.; Nie, H.L.; Zhu, L.M.; Gong, X. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein. Mater. Sci. Eng. C 2015, 48, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.N.; Li, H.; Kang, J.; Zhu, X.H.; Peng, W.; Zhou, H.; Zhong, S.A.; Wang, Y. The synthesis of temperature-sensitive molecularly imprinted film on support beads and its application for bovine serum albumin separation. Colloids Surf. A 2016, 504, 367–375. [Google Scholar] [CrossRef]
- Stevenson, D.; EL-Sharif, H.F.; Reddy, S.M. Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers. Bioanalysis 2016, 8, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Samardzic, R.; Sussitz, H.F.M.; Jongkon, N.; Lieberzeit, P.A. Quartz crystal microbalance in-line sensing of Escherichia coli in a bioreactor using molecularly imprinted polymers. Sens. Lett. 2014, 12, 1152–1155. [Google Scholar] [CrossRef]
- Wangchareansak, T.; Sangma, C.; Choowongkomon, K.; Dickert, F.; Lieberzeit, P. Surface molecular imprints of WGA lectin as artificial receptors for mass-sensitive binding studies. Anal. Bioanal. Chem. 2011, 400, 2499–2506. [Google Scholar] [CrossRef] [PubMed]
- Schirhagl, R.; Lieberzeit, P.A.; Blaas, D.; Dickert, F.L. Chemosensors for viruses based on artificial immunoglobulin copies. Adv. Mater. 2010, 22, 2078–2081. [Google Scholar] [CrossRef] [PubMed]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Attieh, M.D.; Zhao, Y.; Elkak, A.; Falcimaigne-Cordin, A.; Haupt, K. Enzyme-initiated free-radical polymerization of molecularly imprinted polymer nanogels on a solid phase with an immobilized radical source. Angew. Chem. Int. Ed. 2017, 56, 3339–3343. [Google Scholar] [CrossRef] [PubMed]
Recognition Element | Template |
---|---|
NIP | None |
MIP (BSA) | 10 µL BSA solution (50 mg/mL) |
MIP (NP-NIP) | 10 µL of a solution containing 10 mg/L NIP nanoparticles |
MIP (NP-MIP-BSA) | 10 µL of a solution containing 10 mg/L MIP (BSA) nanoparticles after synthesis, i.e., still containing BSA molecules on their surfaces |
MIP (NP-MIP-wash) | 10 µL of a solution containing 10 mg/L MIP (BSA) nanoparticles after washing, i.e., after removing BSA molecules |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, N.V.H.; Sussitz, H.F.; Ladenhauf, E.; Pum, D.; Lieberzeit, P.A. Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition. Sensors 2018, 18, 180. https://doi.org/10.3390/s18010180
Phan NVH, Sussitz HF, Ladenhauf E, Pum D, Lieberzeit PA. Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition. Sensors. 2018; 18(1):180. https://doi.org/10.3390/s18010180
Chicago/Turabian StylePhan, Nam Van Ho, Hermann F. Sussitz, Eva Ladenhauf, Dietmar Pum, and Peter A. Lieberzeit. 2018. "Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition" Sensors 18, no. 1: 180. https://doi.org/10.3390/s18010180
APA StylePhan, N. V. H., Sussitz, H. F., Ladenhauf, E., Pum, D., & Lieberzeit, P. A. (2018). Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition. Sensors, 18(1), 180. https://doi.org/10.3390/s18010180