LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber
Abstract
:1. Introduction
2. Polarizability of GNRs and Hydrogel as Low-Finesse FP Etalon
2.1. Fabry-Perot Interferometer
2.2. LSPR of GNRs in Hydrogel
3. Materials and Methods
3.1. Fabricating the GNR–Hydrogel
3.2. Setup of the FO Sensor Instrument
3.3. Preparation of Solutions for Hydrogel Swelling and LSPR Shifts
3.4. Functionalizing GNRs in Hydrogel with Biotin for Biotin–Streptavidin Recombination
3.4.1. Functionalizing GNRs in Hydrogel with Biotin
3.4.2. Biotin–Streptavidin Recombination on GNRs in Hydrogel
3.5. Reflection Measurements of GNRs Embedded in Hydrogel in and
- For the FP experiments, we used the reflection spectrum of the bare DCOF in Milli-Q water solution.
- For the LSPR experiments, we used the reflection spectra from the hydrogel without GNRs for each pH, glycerol and sucrose solution, to compensate for the artefacts in the LSPR spectra caused by the reflections at the fiber–gel interface.
3.6. Estimating the FSR and the LSPR Peak Position
4. Results
4.1. Acquisition of LSPR and Interferometric Signals
4.2. FSR Response for pH and RI
4.3. LSPR Response for pH and RI
4.4. Biotin–Streptavidin Recombination on GNRs in Hydrogel
4.5. Summary of Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dahlin, A.B. Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors. Sensors 2012, 12, 3018–3036. [Google Scholar] [CrossRef] [PubMed]
- Gorris, H.H.; Blicharz, T.M.; Walt, D.R. Optical-fiber bundles. FEBS J. 2007, 274, 5462–5470. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, T.R.; Tanner, M.G.; Megia-Fernandez, A.; Harrington, K.; Wood, H.A.; Chankeshwara, S.; Zhu, P.; Choudhury, D.; Yu, F.; Thomson, R.R.; et al. Multiplexed Fibre Optic Sensing in the Distal Lung (Conference Presentation). Presented at the SPIE BiOS, San Francisco, CA, USA, 28 January–2 February 2017; Volume 10058, p. 100580E. [Google Scholar]
- Vindas, K.; Engel, E.; Garrigue, P.; Livache, T.; Arbault, S.; Sojic, N.; Leroy, L. Nano-structured optical fiber bundles for remote SPR detection: A first step toward in vivo biomolecular analysis. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; Volume 10323, pp. 1–4. [Google Scholar]
- Zhang, Z.; Chen, Y.; Liu, H.; Bae, H.; Olson, D.A.; Gupta, A.K.; Yu, M. On-fiber plasmonic interferometer for multi-parameter sensing. Opt. Express 2015, 23, 10732–10740. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.; Shao, L.Y.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Guan, B.O.; Albert, J. [INVITED] Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef]
- Epstein, J.R.; Walt, D.R. Fluorescence-based fibre optic arrays: A universal platform for sensing. Chem. Soc. Rev. 2003, 32, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Michael, K.L.; Taylor, L.C.; Schultz, S.L.; Walt, D.R. Randomly Ordered Addressable High-Density Optical Sensor Arrays. Anal. Chem. 1998, 70, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Sciacca, B.; Monro, T.M. Dip Biosensor Based on Localized Surface Plasmon Resonance at the Tip of an Optical Fiber. Langmuir 2014, 30, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Muri, H.I.D.I.; Bano, A.; Hjelme, D.R. First step towards an interferometric and localized surface plasmon fiber optic sensor. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Muri, H.I.D.I.; Bano, A.; Hjelme, D.R. A single point, multiparameter, fiber optic sensor based on a combination of interferometry and LSPR. JLT 2018. Accepted for publication. [Google Scholar]
- Tierney, S.; Hjelme, D.R.; Stokke, B.T. Determination of Swelling of Responsive Gels with Nanometer Resolution. Fiber-Optic Based Platform for Hydrogels as Signal Transducers. Anal. Chem. 2008, 80, 5086–5093. [Google Scholar] [CrossRef] [PubMed]
- Tierney, S.; Falch, B.M.H.; Hjelme, D.R.; Stokke, B.T. Determination of Glucose Levels Using a Functionalized Hydrogel Optical Fiber Biosensor: Toward Continuous Monitoring of Blood Glucose in Vivo. Anal. Chem. 2009, 81, 3630–3636. [Google Scholar] [CrossRef] [PubMed]
- Muri, H.I.D.I.; Hjelme, D.R. Novel localized surface plasmon resonance based optical fiber sensor. Proc. SPIE 2016, 9702, 97020L-1. [Google Scholar]
- Muri, H.I.D.I.; Hjelme, D.R. LSPR Coupling and Distribution of Interparticle Distances between Nanoparticles in Hydrogel on Optical Fiber End Face. Sensors 2017, 17, 2723. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ohodnicki, P.R.; Su, X.; Keller, M.; Brown, T.D.; Baltrus, J.P. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures. Nanoscale 2015, 7, 2527–2535. [Google Scholar] [CrossRef] [PubMed]
- Ohodnicki, P.R., Jr.; Wang, C. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors. J. Appl. Phys. 2016, 119, 064502. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T. Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids. J. Phys. Chem. B 2004, 108, 13963–13971. [Google Scholar] [CrossRef]
- Radhakumary, C.; Sreenivasan, K. Gold nanoparticles generated through “green route” bind Hg2+ with a concomitant blue shift in plasmon absorption peak. Analyst 2011, 136, 2959–2962. [Google Scholar] [CrossRef] [PubMed]
- Mie, G. Beiträge zur Optik trüberber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–442. [Google Scholar] [CrossRef]
- Gans, R. The Form of Ultramicroscopic Gold Particles. Ann. Phys. 1912, 37, 881–900. [Google Scholar] [CrossRef]
- Jensen, T.R.; Duval, M.L.; Kelly, K.L.; Lazarides, A.A.; Schatz, G.C.; Van Duyne, R.P. Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles. J. Phys. Chem. B 1999, 103, 9846–9853. [Google Scholar] [CrossRef]
- Jain, P.K.; Eustis, S.; El-Sayed, M.A. Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. J. Phys. Chem. B 2006, 110, 18243–18253. [Google Scholar] [CrossRef] [PubMed]
- Klimov, V.V.; Guzatov, D.V. Optical properties of an atom in the presence of a two-nanosphere cluster. Quantum Electron. 2007, 37, 209. [Google Scholar] [CrossRef]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007; Chapter 3.2. [Google Scholar]
- Haynes, W.M. Handbook of Chemistry and Physics, 97th ed.; CRC Taylor and Francis Group: Boca Raton, FL, USA, 2016; pp. 2016–2017. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Silverman, B.W. Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting. J. R. Stat. Soc. Ser. B (Methodol.) 1985, 47, 1–52. [Google Scholar]
- Sanders, M.; Lin, Y.; Wei, J.; Bono, T.; Lindquist, R.G. An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron. 2014, 61, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Marinakos, S.M.; Chen, S.; Chilkoti, A. Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor. Anal. Chem. 2007, 79, 5278–5283. [Google Scholar] [CrossRef] [PubMed]
- Hjelme, D.R.; Aune, O.; Falch, B.; Østling, D.; Ellingsen, R. Fiber-Optic Biosensor Technology for Rapid, Accurate and Specific Detection of Enzymes. In Advanced Photonics; Optical Society of America: Washington, DC, USA, 2014; p. JTu6A.3. [Google Scholar]
- Jeong, H.H.; Erdene, N.; Park, J.H.; Jeong, D.H.; Lee, H.Y.; Lee, S.K. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor. Biosens. Bioelectron. 2013, 39, 346–351. [Google Scholar] [CrossRef] [PubMed]
Stimuli | Free Spectral Range Shift | Mechanism |
---|---|---|
Hydrogel deswelling | Large increase | Decreased physical length |
Bulk refractive-index increase | Small decrease | Hydrogel swelling due to solvent |
Stimuli | LSPR Shift | Mechanism |
---|---|---|
Hydrogel deswelling | Small blueshift | Increased plasmon coupling |
Bulk refractive-index increase | Large blueshift | Change in local surrounding media |
Analyte binding to receptors | Redshift | Local refractive index increase |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muri, H.I.; Bano, A.; Hjelme, D.R. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber. Sensors 2018, 18, 187. https://doi.org/10.3390/s18010187
Muri HI, Bano A, Hjelme DR. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber. Sensors. 2018; 18(1):187. https://doi.org/10.3390/s18010187
Chicago/Turabian StyleMuri, Harald Ian, Andon Bano, and Dag Roar Hjelme. 2018. "LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber" Sensors 18, no. 1: 187. https://doi.org/10.3390/s18010187
APA StyleMuri, H. I., Bano, A., & Hjelme, D. R. (2018). LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber. Sensors, 18(1), 187. https://doi.org/10.3390/s18010187