UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of the ZnO Film
2.2. Characterizations
2.3. Fabrication and Gas Sensing Measurements
3. Results and Discussion
3.1. Structure and Morphology of the As-Prepared Material
3.2. Sensing Properties
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, S.; Bang, S.; Park, J.; Park, S.; Jeong, W.; Jeon, H. The effect of oxygen remote plasma reatment on ZnO TFTs fabricated by atomic layer deposition. Phys. Status Solidi 2010, 207, 1845–1849. [Google Scholar] [CrossRef]
- Da Silva, L.F.; M’Peko, J.-C.; Catto, A.C.; Bernardini, S.; Mastelaro, V.R.; Aguir, K.; Ribeiro, C.; Longo, E. UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens. Actuators B Chem. 2017, 240, 573–579. [Google Scholar] [CrossRef]
- Joshi, N.; da Silvac, L.F.; Jadhav, H.S.; Shimizu, F.M.; Suman, P.H.; M’Peko, J.-C.; Orlandi, M.O.; Seo, J.G.; Mastelaro, V.R.; Oliveira, O.N., Jr. Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sens. Actuators B Chem. 2018, 257, 906–915. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposite—A review. Progress Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Kant, S.; Pathania, D.; Singh, P.; Dhiman, P.; Kumar, A. Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98/O Polycrylamide nanocomposite using coupled absorption and Photocatalysis. Appl. Catal. B Environ. 2014, 147, 340–352. [Google Scholar] [CrossRef]
- Zhao, M.G.; Wang, X.C.; Ning, L.L.; Jia, J.F.; Li, X.J.; Cao, L.L. Electrospun Cu-doped ZnO nanofibers for H2S sensing. Sens. Actuators B Chem. 2011, 156, 588–592. [Google Scholar] [CrossRef]
- Arnold, S.P.; Prokes, S.K.; Perkins, F.K.; Zaghloul, M.E. Design and performance of a simple room-temperature Ga2O3 nanowire gas sensor. Appl. Phys. Lett. 2009, 95, 103102. [Google Scholar] [CrossRef]
- Choi, Y.J.; Hwang, I.S.; Park, J.G.; Choi, K.J.; Park, J.H.; Lee, J.H. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 2008, 19, 095508. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.Z.; Xiao, Z.M.; Teh, K.S.; Han, Z.B.; Luo, G.X.; Shi, C.; Sun, D.H.; Zhao, J.B.; Lin, L.W. High-throughput rod-induced electrospinning. J. Phys. D Appl. Phys. 2016, 49, 365302. [Google Scholar] [CrossRef]
- Fan, S.W.; Srivastava, A.K.; Dravid, V.P. Nanopatterned Poly-crystalline ZnO for room temperature gas sensing. Sens. Actuators B Chem. 2010, 144, 159–163. [Google Scholar] [CrossRef]
- Fan, S.W.; Srivastava, A.K.; Dravid, V.P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106. [Google Scholar] [CrossRef]
- Camagni, P.; Faglia, G.; Galinetto, P.; Perego, C.; Samoggia, G.; Sberveglieri, G. Photo-sensitivity activation of SnO2 thin film gas sensors at room temperature. Sens. Actuators B Chem. 1996, 31, 99–103. [Google Scholar] [CrossRef]
- Pradesa, J.D.; Diaz, R.J.; Ramirezb, F.H.; Barth, S.; Cireraa, A.; Rodriguez, A.R.; Mathurc, S.; Morante, J.R. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens. Actuators B Chem. 2009, 140, 337–341. [Google Scholar] [CrossRef]
- Giberti, A.; Malagu, C.; Guidi, V. WO3 sensing properties enhanced by UV illumination: an evidence of surface effect. Sens. Actuators B Chem. 2012, 165, 59–61. [Google Scholar] [CrossRef]
- Kuang, Q.; Lao, C.S.; Li, Z.; Liu, Y.Z.; Xie, Z.X.; Zheng, L.S.; Wang, Z.L. Enhancing the photon and gas sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C 2008, 112, 11539–11544. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cimalla, V.; Kups, T.; Rohlig, C.C.; Stauden, T.; Ambacher, O. Integration of In2O3 nanoparticle based ozone sensors with GaInN/GaN light emitting diodes. Appl. Phys. Lett. 2007, 91, 103509. [Google Scholar] [CrossRef]
- Shinar, R.; Zhou, Z.Q.; Choudhury, B.; Shinar, J. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen. Anal. Chim. Acta 2006, 568, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.B.; Liu, F.M.; Zhong, T.G.; Xu, J.; Zhang, Y.Q.; Lu, G.Y. Effectsof UV light illumination on the gas sensing properties of ZnO–SnO2 thick film sensor. Sens. Lett. 2011, 9, 824–827. [Google Scholar] [CrossRef]
- Tamvakos, A.; Calestani, D.; Tamvakos, D.; Mosca, R.; Pullini, D.; Pruna, A. Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Microchim. Acta 2015, 182, 1991–1999. [Google Scholar] [CrossRef]
- Chen, J.T.; Yan, X.B.; Liu, W.W.; Xue, Q.J. The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation. Sens. Actuators B Chem. 2011, 160, 1499–1503. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Karthick, K.; Dhivya, P.; Sridharan, M. Low power deposition of high quality hexagonal ZnO film grown on Al2O3 (0001) sapphire by dc sputtering. Ceram. Int. 2013, 39, 5681–5687. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.G.; Wang, J.; Tang, Z.A. UV activated hollow ZnO microspheres for selective ethanol sensors at low temperatures. Sens. Actuators B Chem. 2016, 232, 158–164. [Google Scholar] [CrossRef]
- De Lacy Costello, B.P.J.; Ewen, R.J.; Ratcliffe, N.M.; Richards, M. Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens. Actuators B Chem. 2008, 134, 945–952. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Alshammari, A.S.; Jayawardena, K.D.G.I.; Beliatis, M.J.; Henley, S.J.; Silva, S.R.P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Li, Y.; Chai, X.; Hu, Z.; Deng, Y. UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 2010, 114, 1293–1298. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Xie, C.; Wu, J.; Zeng, D.; Liao, Y. A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram. Int. 2012, 38, 503–509. [Google Scholar] [CrossRef]
- Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Samransuksamer, B.; Hongsith, N.; Choopun, S. Low temperature ethanol response Enhancement of ZnO nanostructures sensor decorated with gold nanoparticles exposed to UV illumination. Sens. Actuators A Phys. 2016, 251, 188–197. [Google Scholar] [CrossRef]
- Lin, C.H.; Chang, S.J.; Chen, W.S.; Hsueh, T.J. Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell. RSC Adv. 2016, 6, 11146–11150. [Google Scholar] [CrossRef]
Nanostructure of ZnO | UV Wavelength (nm)/Energy | Working Temperature (°C) | Ethanol (ppm) | Response | Detection Limit (ppm) | Reference |
---|---|---|---|---|---|---|
ZnO-SnO2 nanoparticles | 380/60 mW/cm2 | 250 | 1000 | 23 (Ra/Rg) | 100 | [19] |
ZnO nanoparticles | 400/2.2 mW/cm2 | RT | 100 | 1.6 (△I/Ia) | 10 | [23] |
ZnO nanodisk | 365/1.6 mW/cm2 | RT | 200 | 0.3 (△I/Ia) | 20 | [24] |
ZnO nanofiber | 365/8 W/cm2 | RT | 60 | 0.8 (△I/Ia) | 10 | [25] |
ZnO porous film | 365/3.6 mW/cm2 | - | 100 | 1.5 (△I/Ia) | 30 | [26] |
ZnO:AuNPs | 254/4.1 mW/cm2 | 125 | 1000 | 6.3 (Ra/Rg) | 100 | [27] |
ZnO nanowire | 365/100 mW/cm2 | 53 | 100 | 1.2 (△R/Ra) | 50 | [28] |
ZnO film | 365/0.5 W/cm2 | 170 | 100 | 163 (Ra/Rg) | 0.1 | This work |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Du, Y.; Wang, Q.; Zhang, H.; Geng, Y.; Li, X.; Tian, X. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film. Sensors 2018, 18, 50. https://doi.org/10.3390/s18010050
Huang J, Du Y, Wang Q, Zhang H, Geng Y, Li X, Tian X. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film. Sensors. 2018; 18(1):50. https://doi.org/10.3390/s18010050
Chicago/Turabian StyleHuang, Jinyu, Yu Du, Quan Wang, Hao Zhang, Youfu Geng, Xuejin Li, and Xiaoqing Tian. 2018. "UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film" Sensors 18, no. 1: 50. https://doi.org/10.3390/s18010050
APA StyleHuang, J., Du, Y., Wang, Q., Zhang, H., Geng, Y., Li, X., & Tian, X. (2018). UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film. Sensors, 18(1), 50. https://doi.org/10.3390/s18010050