Accelerometric Trunk Sensors to Detect Changes of Body Positions in Immobile Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Accelerometers and Computation
2.2. Patients
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hausdorff, J.M.; Buchman, A.S. What links gait speed and MCI with dementia? A fresh look at the association between motor and cognitive function. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D.; Addoh, O. Accelerometer-Determined Physical Activity and All-Cause Mortality in a National Prospective Cohort Study of Adults Post-Acute Stroke. Am. J. Health Promot. 2018, 32, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D.; Sheffield, J.; Tyo, B.M.; Fittipaldi-Wert, J. Accelerometer-determined physical activity, mobility disability, and health. Disabil. Health J. 2014, 7, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, M.; Breitenstein, C.; Westerhoff, U.; Sommer, J.; Rösser, N.; Rodriguez, A.D.; Harnish, S.; Knecht, S.; Flöel, A. Motor cortex preactivation by standing facilitates word retrieval in aphasia. Neurorehabil. Neural Repair. 2011, 25, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Pulvermuller, F. Brain mechanisms linking language and action. Nat. Rev. Neurosci. 2005, 6, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Dossa, A.; Glickman, M.E.; Berlowitz, D. Association between mental health conditions and rehospitalization, mortality, and functional outcomes in patients with stroke following inpatient rehabilitation. BMC Health Serv. Res. 2011, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.R.; Kuo, Y.F.; Sharma, G.; Raji, M.A.; Kumar, A.; Goodwin, J.S.; Ostir, G.V.; Ottenbacher, K.J. Mobility after hospital discharge as a marker for 30-day readmission. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Hammond, F.M.; Horn, S.D.; Smout, R.J.; Seel, R.T.; Beaulieu, C.L.; Corrigan, J.D.; Barrett, R.S.; Cullen, N.; Sommerfeld, T.; Brandstater, M.E. Rehospitalization During 9 Months After Inpatient Rehabilitation for Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2015, 96, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Ottenbacher, K.J.; Graham, J.E.; Ottenbacher, A.J.; Lee, J.; Al Snih, S.; Karmarkar, A.; Reistetter, T.; Ostir, G.V. Hospital readmission in persons with stroke following postacute inpatient rehabilitation. J. Gerontol. Ser. A. Biol. Sci. Med. Sci. 2012, 67, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S.; Slaughter, S.E.; Jones, C.A.; Ickert, C.; Wagg, A.S. Measuring Activity Performance of Older Adults Using the activPAL: A Rapid Review. Healthcare 2017, 5, 94. [Google Scholar] [CrossRef] [PubMed]
- Cheung, V.H.; Gray, L.; Karunanithi, M. Review of accelerometry for determining daily activity among elderly patients. Arch. Phys. Med. Rehabil. 2011, 92, 998–1014. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, E.D.; Hartmann, A.; Uebelhart, D.; Murer, K.; Zijlstra, W. Wearable systems for monitoring mobility-related activities in older people: A systematic review. Clin. Rehabil. 2008, 22, 878–895. [Google Scholar] [CrossRef] [PubMed]
- Gebruers, N.; Vanroy, C.; Truijen, S.; Engelborghs, S.; De Deyn, P.P. Monitoring of physical activity after stroke: A systematic review of accelerometry-based measures. Arch. Phys. Med. Rehabil. 2010, 91, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.A.; Pal, J.; Becker, I. Measuring free-living physical activity in adults with and without neurologic dysfunction with a triaxial accelerometer. Arch. Phys. Med. Rehabil. 2008, 89, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Paradisi, F.; Brunelli, S.; Delussu, A.S.; Pellegrini, R.; Zenardi, D.; Paolucci, S.; Traballesi, M. Assessment of gait stability, harmony, and symmetry in subjects with lower-limb amputation evaluated by trunk accelerations. J. Rehabil. Res. Dev. 2014, 51, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, E.; Iosa, M.; Belluscio, V.; Morone, G.; Tramontano, M.; Vannozzi, G. Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke. J. Biomech. 2017, 61, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Bonora, G.; Carpinella, I.; Cattaneo, D.; Chiari, L.; Ferrarin, M. A new instrumented method for the evaluation of gait initiation and step climbing based on inertial sensors: A pilot application in Parkinson’s disease. J. Neuroeng. Rehabil. 2015, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Fusco, A.; Morone, G.; Pratesi, L.; Coiro, P.; Venturiero, V.; De Angelis, D.; Bragoni, M.; Paolucci, S. Assessment of upper-body dynamic stability during walking in patients with subacute stroke. J. Rehabil. Res. Dev. 2012, 49, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Mizuike, C.; Ohgi, S.; Morita, S. Analysis of stroke patient walking dynamics using a tri-axial accelerometer. Gait Posture 2009, 30, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Osaka, H.; Shinkoda, K.; Watanabe, S.; Fujita, D.; Kobara, K.; Yoshimura, Y.; Ito, T.; Suehiro, T. Association between trunk acceleration during walking and clinically assessed balance in patients with stroke. NeuroRehabilitation 2017, 41, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.J. Using an Accelerometer for Inclination Sensing; Analog Devices: Norwood, MA, USA, 2010. [Google Scholar]
- Ottenbacher, K.J.; Smith, P.M.; Illig, S.B.; Fiedler, R.C.; Gonzales, V.; Granger, C.V. Characteristics of persons rehospitalized after stroke rehabilitation. Arch. Phys. Med. Rehabil. 2001, 82, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Gorman, E.; Hanson, H.M.; Yang, P.H.; Khan, K.M.; Liu-Ambrose, T.; Ashe, M.C. Accelerometry analysis of physical activity and sedentary behavior in older adults: A systematic review and data analysis. Eur. Rev. Aging Phys. Act. 2014, 11, 35–49. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauen, K.; Schaffrath, J.; Pradhan, C.; Schniepp, R.; Jahn, K. Accelerometric Trunk Sensors to Detect Changes of Body Positions in Immobile Patients. Sensors 2018, 18, 3272. https://doi.org/10.3390/s18103272
Rauen K, Schaffrath J, Pradhan C, Schniepp R, Jahn K. Accelerometric Trunk Sensors to Detect Changes of Body Positions in Immobile Patients. Sensors. 2018; 18(10):3272. https://doi.org/10.3390/s18103272
Chicago/Turabian StyleRauen, Katrin, Judith Schaffrath, Cauchy Pradhan, Roman Schniepp, and Klaus Jahn. 2018. "Accelerometric Trunk Sensors to Detect Changes of Body Positions in Immobile Patients" Sensors 18, no. 10: 3272. https://doi.org/10.3390/s18103272
APA StyleRauen, K., Schaffrath, J., Pradhan, C., Schniepp, R., & Jahn, K. (2018). Accelerometric Trunk Sensors to Detect Changes of Body Positions in Immobile Patients. Sensors, 18(10), 3272. https://doi.org/10.3390/s18103272