IMU-Based Virtual Road Profile Sensor for Vehicle Localization
Abstract
:1. Introduction
2. Observer Design for Road Profile Estimation
2.1. Vehicle Vertical Model
2.2. Synthesis for Unknown Input Estimation
2.3. Linearization and Discretization of the Model
2.4. Measurement Bias Model
2.5. Virtual Measurement for Observability
2.6. Road Profile Estimation Validation
3. Localization Using Estimated Road Profile
3.1. Feature Extraction
3.2. Feature Matching
4. Experimental Validation
4.1. Consistency of Road Profile Estimatioin
4.2. Localization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. Available online: http://orfe.princeton.edu/~alaink/SmartDrivingCars/Reports&Speaches_External/Litman_AutonomousVehicleImplementationPredictions.pdf (accessed on 3 October 2018).
- Autonomous Vehicles: Drivers for Change. Available online: https://www.roadsbridges.com/autonomous-vehicles-drivers-change (accessed on 3 October 2018).
- Effects of Next-Generation Vehicles on Travel Demand and Highway Capacity. Available online: http://orfe.princeton.edu/~alaink/Papers/FP_NextGenVehicleWhitePaper012414.pdf (accessed on 3 October 2018).
- Tao, Z.; Bonnifait, P.; Fremont, V.; Ibanez-Guzman, J. Mapping and localization using GPS, lane markings and proprioceptive sensors. In Proceedings of the International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 406–412. [Google Scholar]
- Lu, M.; Wevers, K.; Van Der Heijden, R. Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety. Transp. Plan. Technol. 2005, 28, 167–187. [Google Scholar] [CrossRef]
- Kleusberg, A.; Langley, R.B. The limitations of GPS. GPS World 1990, 1, 50–52. [Google Scholar]
- Skone, S.; Knudsen, K.; de Jong, M. Limitations in GPS receiver tracking performance under ionospheric scintillation conditions. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 613–621. [Google Scholar] [CrossRef]
- Drawil, N.M.; Amar, H.M.; Basir, O.A. GPS localization accuracy classification: A context-based approach. IEEE Trans. Intell. Transp. Syst. 2013, 14, 262–273. [Google Scholar] [CrossRef]
- Blomenhofer, H.; Hein, G.W.; Taveira Blomenhofer, E.; Werner, W. Development of a real-time DGPS system in the centimeter range. In Proceedings of the Position Location and Navigation Symposium, Las Vegas, NV, USA, 11–15 April 1994; pp. 532–539. [Google Scholar]
- Farrell, J.; Givargis, T. Differential GPS reference station algorithm-design and analysis. IEEE Trans. Control Syst. Technol. 2000, 8, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Cannon, M.E. High-accuracy GPS semikinematic positioning: Modeling and results. J. Inst. Navig. 1990, 37, 53–64. [Google Scholar] [CrossRef]
- Jie, D.; Masters, J.; Barth, M. Lane-level positioning for in-vehicle navigation and automated vehicle location (AVL) systems. In Proceedings of the International IEEE Conference on Intelligent Transportation Systems, Washington, WA, USA, 3–6 October 2004; pp. 35–40. [Google Scholar]
- Meguro, J.-I.; Murata, T.; Takiguchi, J.-I.; Amano, Y.; Hashizume, T. GPS accuracy improvement by satellite selection using omnidirectional infrared camera. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 1804–1810. [Google Scholar]
- Parra Alonso, I.; Fernandez Llorca, D.; Gavilan, M.; Alvarez Pardo, S.; Garcia-Garrido, M.A.; Vlacic, L.; Sotelo, M.A. Accurate global localization using visual odometry and digital maps on urban environments. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1535–1545. [Google Scholar] [CrossRef]
- Redmill, K.A.; Kitajima, T.; Ozguner, U. DGPS/INS integrated positioning for control of automated vehicle. In Proceedings of the Intelligent Transportation Systems, Oakland, CA, USA, 25–29 August 2001; pp. 172–178. [Google Scholar]
- Farrell, J.A.; Givargis, T.D.; Barth, M.J. Real-time differential carrier phase GPS-aided INS. IEEE Trans. Control Syst. Technol. 2000, 8, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Garratt, M.; Lambert, A.; Wang, J.J.; Hana, S.; Sinclair, D. Integration of GPS/INS/vision sensors to navigate unmanned aerial vehicles. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; pp. 963–970. [Google Scholar]
- Skog, I.; Handel, P. In-Car positioning and navigation technologies-A survey. IEEE Trans. Intell. Transp. Syst. 2009, 10, 4–21. [Google Scholar] [CrossRef]
- Wei-Wen, K. Integration of GPS and dead-reckoning navigation systems. In Proceedings of the Vehicle Navigation and Information Systems Conference, Troy, MI, USA, 20–23 Octorber 1991; pp. 635–643. [Google Scholar]
- Krakiwsky, E.J.; Harris, C.B.; Wong, R.V. A Kalman filter for integrating dead reckoning, map matching and GPS positioning. In Proceedings of the Position Location and Navigation Symposium, Orlando, FL, USA, 29 November–2 December 1988; pp. 39–46. [Google Scholar]
- Laftchiev, E.I.; Lagoa, C.M.; Brennan, S.N. Vehicle localization using in-vehicle pitch data and dynamical models. IEEE Trans. Intell. Transp. Syst. 2015, 16, 206–220. [Google Scholar] [CrossRef]
- Dean, A.; Martini, R.; Brennan, S. Terrain-based road vehicle localization using particle filters. Veh. Syst. Dyn. 2011, 49, 1209–1223. [Google Scholar] [CrossRef]
- Imine, H.; Delanne, Y.; M’Sirdi, N.K. Road profile input estimation in vehicle dynamics simulation. Veh. Syst. Dyn. 2006, 44, 285–303. [Google Scholar] [CrossRef]
- Doumiati, M.; Victorino, A.; Charara, A.; Lechner, D. Estimation of road profile for vehicle dynamics motion: Experimental validation. In Proceedings of the American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 5237–5242. [Google Scholar]
- Yu, W.; Zhang, X.; Guo, K.; Karimi, H.R.; Ma, F.; Zheng, F. Adaptive real-time estimation on road disturbances properties considering load variation via vehicle vertical dynamics. Math. Probl. Eng. 2013, 2013, 9. [Google Scholar] [CrossRef]
- Tudón-Martínez, J.C.; Fergani, S.; Sename, O.; Morales-Menendez, R.; Dugard, L. Online road profile estimation in automotive vehicles. In Proceedings of the European Control Conference, Strasbourg, France, 24–27 June 2014; pp. 2370–2375. [Google Scholar]
- Rath, J.J.; Veluvolu, K.C.; Defoort, M. Adaptive Super-Twisting observer for estimation of random road excitation profile in automotive suspension systems. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rath, J.J.; Veluvolu, K.C.; Defoort, M. Estimation of road profile for suspension systems using adaptive super-twisting observer. In Proceedings of the European Control Conference, Strasbourg, France, 24–27 June 2014; pp. 1675–1680. [Google Scholar]
- Tudón-Martínez, J.C.; Fergani, S.; Sename, O.; Martinez, J.J.; Morales-Menendez, R.; Dugard, L. Adaptive road profile estimation in semiactive car suspensions. IEEE Trans. Control Syst. Technol. 2015, 23, 2293–2305. [Google Scholar] [CrossRef]
- Doumiati, M.; Martinez, J.; Sename, O.; Dugard, L.; Lechner, D. Road profile estimation using an adaptive Youla–Kučera parametric observer: Comparison to real profilers. Control Eng. Pract. 2017, 61, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Chassande-Mottin, É.; Auger, F.; Flandrin, P. Reassignment. In Time-Frequency Analysis: Concepts and Methods; Hlawatsch, F., Auger, F., Eds.; ISTE/John Wiley and Sons: London, UK, 2010; pp. 249–277. ISBN 9781848210332. [Google Scholar]
- Zasadzinski, M.; Mehdi, D.; Darouach, M. Recursive state estimation for singular systems. In Proceedings of the American Control Conference, Boston, MA, USA, 26–28 June 1991; pp. 2850–2851. [Google Scholar]
- Darouach, M.; Zasadzinski, M.; Onana, A.B.; Nowakowski, S. Kalman filtering with unknown inputs via optimal state estimation of singular systems. Int. J. Syst. Sci. 1995, 26, 2015–2028. [Google Scholar] [CrossRef]
- Gillijns, S.; De Moor, B. Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica 2007, 43, 934–937. [Google Scholar] [CrossRef]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Vivet, D.; Gérossier, F.; Checchin, P.; Trassoudaine, L.; Chapuis, R. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches. Int. J. Adv. Robot. Syst. 2013, 10, 307–319. [Google Scholar] [CrossRef]
- Parra, I.; Sotelo, M.A.; Llorca, D.F.; Oca, M. Robust visual odometry for vehicle localization in urban environments. Robotica 2010, 28, 441–452. [Google Scholar] [CrossRef]
- Zhang, F.; Stähle, H.; Chen, G.; Simon, C.C.C.; Buckl, C.; Knoll, A. A sensor fusion approach for localization with cumulative error elimination. In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Hamburg, Germany, 13–15 September 2012; pp. 1–6. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gim, J.; Ahn, C. IMU-Based Virtual Road Profile Sensor for Vehicle Localization. Sensors 2018, 18, 3344. https://doi.org/10.3390/s18103344
Gim J, Ahn C. IMU-Based Virtual Road Profile Sensor for Vehicle Localization. Sensors. 2018; 18(10):3344. https://doi.org/10.3390/s18103344
Chicago/Turabian StyleGim, Juhui, and Changsun Ahn. 2018. "IMU-Based Virtual Road Profile Sensor for Vehicle Localization" Sensors 18, no. 10: 3344. https://doi.org/10.3390/s18103344
APA StyleGim, J., & Ahn, C. (2018). IMU-Based Virtual Road Profile Sensor for Vehicle Localization. Sensors, 18(10), 3344. https://doi.org/10.3390/s18103344