Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry
Abstract
:1. Introduction
2. Related Works
2.1. Principle of Core-CBCM Method
2.2. Single-Ended Core-CBCM Methods
2.3. Fully Differential Core-CBCM Capacitive Sensor Method
2.4. Core-CBCM Capacitance-to-Frequency Converter
3. Proposed Core-CBCM Capacitive Sensor
3.1. Description of the Sensor Performance
3.1.1. Core-CBCM Block Performance and the Bias Current
3.1.2. The First Description of the Sensor Performance
3.1.3. The Second Description of the Sensor Performance
3.2. Current-Controlled Oscillator (CCO)
3.2.1. Performance of the Used CCO
3.2.2. Effect of the Nonlinearity of the CCO on the Sensor Response
3.3. Counter and Register
3.4. Interdigitated Microelectrodes
4. Clocking Strategy of the Sensor
5. Results
5.1. Linear Region of the CCO
5.2. The Response of the Analog Part of the Sensor
5.3. The Response of the Whole Practical Sensor, Its Nonlinearity, and Its Temperature Dependency
5.4. Mismatch Effects
5.5. Other Specifications of the Sensor
6. Further Discussions and Future Works
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kar, S.K.; Chatterjee, P.; Mukherjee, B.; Swamy, K.B.M.M.; Sen, S. A differential output interfacing ASIC for integrated capacitive sensors. IEEE Trans. Instrum. Meas. 2018, 67, 196–203. [Google Scholar] [CrossRef]
- Utz, A.; Walk, C.; Stanitzki, A.; Mokhtari, M.; Kraft, M.; Kokozinski, R. A high precision MEMS based capacitive accelerometer for seismic measurements. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017. [Google Scholar]
- Walker, G. A review of technologies for sensing contact location on the surface of a display. J. Soc. Inf. Disp. 2012, 20, 413–440. [Google Scholar] [CrossRef]
- Pedrocchi, A.; Hoen, S.; Ferrigno, G.; Pedotti, A. Perspectives on MEMS in bioengineering: A novel capacitive position microsensor [and laser surgery and drug delivery applications]. IEEE Trans. Biomed. Eng. 2000, 47, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Kou, H.; Zhang, L.; Tan, Q.; Liu, G.; Lv, W.; Lu, F.; Dong, H.; Xiong, J. Wireless flexible pressure sensor based on micro-patterned graphene/pdms composite. Sens. Actuators A 2018, 277, 150–156. [Google Scholar] [CrossRef]
- Deng, W.-J.; Wang, L.-F.; Dong, L.; Huang, Q.-A. LC wireless sensitive pressure sensors with microstructured PDMS dielectric layers for wound monitoring. IEEE Sens. J. 2018, 18, 4886–4892. [Google Scholar] [CrossRef]
- Chattopadhyay, M.; Chowdhury, D. A new scheme for reducing breathing trouble through MEMS based capacitive pressure sensor. Microsyst. Technol. 2016, 22, 2731–2736. [Google Scholar] [CrossRef]
- Asano, S.; Muroyama, M.; Bartley, T.; Kojima, T.; Nakayama, T.; Yamaguchi, U.; Yamada, H.; Nonomura, Y.; Hata, Y.; Funabashi, H. Surface-mountable capacitive tactile sensors with flipped CMOS-diaphragm on a flexible and stretchable bus line. Sens. Actuators A 2016, 240, 167–176. [Google Scholar] [CrossRef]
- Pichorim, S.F.; Gomes, N.J.; Batchelor, J.C. Two solutions of soil moisture sensing with RFID for landslide monitoring. Sensors 2018, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Stagni, C.; Guiducci, C.; Benini, L.; Riccò, B.; Carrara, S.; Samorí, B.; Paulus, C.; Schienle, M.; Augustyniak, M.; Thewes, R. Cmos DNA sensor array with integrated A/D conversion based on label-free capacitance measurement. IEEE J. Solid State Circuits 2006, 41, 2956–2964. [Google Scholar] [CrossRef]
- Mirsky, V.M.; Riepl, M.; Wolfbeis, O.S. Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron. 1997, 12, 977–989. [Google Scholar] [CrossRef]
- Nabovati, G.; Ghafar-Zadeh, E.; Letourneau, A.; Sawan, M. Towards high throughput cell growth screening: A new CMOS 8 × 8 biosensor array for life science applications. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.B.; Abshire, P. On-chip capacitance sensing for cell monitoring applications. IEEE Sens. J. 2007, 7, 440–447. [Google Scholar] [CrossRef]
- Prakash, S.B.; Abshire, P. Tracking cancer cell proliferation on a CMOS capacitance sensor chip. Biosens. Bioelectron. 2008, 23, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Manaresi, N.; Marzocchi, L.; Medoro, G.; Leonardi, A.; Altomare, L.; Tartagni, M.; Guerrieri, R. Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. In Proceedings of the 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519), San Francisco, CA, USA, 15–19 February 2004. [Google Scholar]
- Jolly, P.; Batistuti, M.R.; Miodek, A.; Zhurauski, P.; Mulato, M.; Lindsay, M.A.; Estrela, P. Highly sensitive dual mode electrochemical platform for microrna detection. Sci. Rep. 2016, 6, 36719. [Google Scholar] [CrossRef] [PubMed]
- Ghafar-Zadeh, E.; Sawan, M. A core-CBCM sigma delta capacitive sensor array dedicated to lab-on-chip applications. Sens. Actuators A 2008, 144, 304–313. [Google Scholar] [CrossRef]
- Jain, V.; Hole, A.; Deshmukh, R.; Patrikar, R. Dynamic capacitive sensing of droplet parameters in a low-cost open EWOD system. Sens. Actuators A 2017, 263, 224–233. [Google Scholar] [CrossRef]
- Guler, M.T.; Bilican, I. Capacitive detection of single bacterium from drinking water with a detailed investigation of electrical flow cytometry. Sens. Actuators A 2018, 269, 454–463. [Google Scholar] [CrossRef]
- Couniot, N.; Francis, L.A.; Flandre, D. A 16 × 16 cmos capacitive biosensor array towards detection of single bacterial cell. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Hagleitner, C.; Lange, D.; Hierlemann, A.; Brand, O.; Baltes, H. Cmos single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid State Circuits 2002, 37, 1867–1878. [Google Scholar] [CrossRef]
- Qin, Y.; Gianchandani, Y.B. A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants. Microsyst. Nanoeng. 2016, 2, 15049. [Google Scholar] [CrossRef]
- Senevirathna, B.P.; Lu, S.; Dandin, M.P.; Basile, J.; Smela, E.; Abshire, P.A. Real-time measurements of cell proliferation using a lab-on-CMOS capacitance sensor array. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Alhoshany, A.; Sivashankar, S.; Mashraei, Y.; Omran, H.; Salama, K.N. A biosensor-CMOS platform and integrated readout circuit in 0.18-μm CMOS technology for cancer biomarker detection. Sensors 2017, 17, 1942. [Google Scholar] [CrossRef] [PubMed]
- Challa, P.K.; Kartanas, T.; Charmet, J.; Knowles, T.P. Microfluidic devices fabricated using fast wafer-scale led-lithography patterning. Biomicrofluidics 2017, 11, 014113. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.-Y.; Wu, Z.-Y.; Fang, F.; Bai, Z.-M.; Yang, D.-Z.; Xu, S.-K. A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. Anal. Bioanal. Chem. 2008, 392, 1317. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Sato, K. Various shapes of silicon freestanding microfluidic channels and microstructures in one-step lithography. J. Micromech. Microeng. 2009, 19, 055003. [Google Scholar] [CrossRef]
- Becker, H.; Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A 2000, 83, 130–135. [Google Scholar] [CrossRef]
- Attia, U.M.; Marson, S.; Alcock, J.R. Micro-injection moulding of polymer microfluidic devices. Microfluid. Nanofluid. 2009, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Dong, Q.; Korman, C.E.; Li, Z.; Zaghloul, M.E. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Sci. Rep. 2013, 3, 1098. [Google Scholar] [CrossRef]
- Rossier, J.; Reymond, F.; Michel, P.E. Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 2002, 23, 858–867. [Google Scholar] [CrossRef]
- Hruby, J. Overview of LIGA microfabrication. In Proceedings of the AIP Conference, Snowbird, UT, USA, 1–5 October 2001; Volume 55. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3d-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [PubMed]
- Ghafar-Zadeh, E.; Sawan, M.; Therriault, D. Novel direct-write cmos-based laboratory-on-chip: Design, assembly and experimental results. Sens. Actuators A 2007, 134, 27–36. [Google Scholar] [CrossRef]
- Datta-Chaudhuri, T.; Smela, E.; Abshire, P.A. System-on-chip considerations for heterogeneous integration of CMOS and fluidic bio-interfaces. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mahdavi, A.; Tirrell, D.A.; Hajimiri, A. A magnetic cell-based sensor. Lab Chip 2012, 12, 4465–4471. [Google Scholar] [CrossRef] [PubMed]
- Prodromakis, T.; Michelakis, K.; Zoumpoulidis, T.; Dekker, R.; Toumazou, C. Biocompatible encapsulation of cmos based chemical sensors. In Proceedings of the 2009 IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009. [Google Scholar] [CrossRef]
- Huang, Y.; Mason, A.J. Lab-on-CMOS: Integrating microfluidics and electrochemical sensor on CMOS. In Proceedings of the 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, Taiwan, 20–23 February 2011. [Google Scholar]
- Wu, A.; Wang, L.; Jensen, E.; Mathies, R.; Boser, B. Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 2010, 10, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mason, A.J. Post-cmos parylene packaging for on-chip biosensor arrays. In Proceedings of the 2010 IEEE Sensors, Kona, HI, USA, 1–4 November 2010. [Google Scholar] [CrossRef]
- Li, L.; Yin, H.; Mason, A.J. Epoxy chip-in-carrier integration and screen-printed metalization for multichannel microfluidic lab-on-CMOS microsystems. IEEE Trans. Biomed. Circuits Syst. 2018. [Google Scholar] [CrossRef] [PubMed]
- Burdallo, I.; Jimenez-Jorquera, C.; Fernández-Sánchez, C.; Baldi, A. Integration of microelectronic chips in microfluidic systems on printed circuit board. J. Micromech. Microeng. 2012, 22, 105022. [Google Scholar] [CrossRef]
- Ciccarella, P.; Carminati, M.; Sampietro, M.; Ferrari, G. Multichannel 65 zF rms resolution CMOS monolithic capacitive sensor for counting single micrometer-sized airborne particles on chip. IEEE J. Solid State Circuits 2016, 51, 2545–2553. [Google Scholar] [CrossRef]
- Mohammad, K.; Buchanan, D.A.; Thomson, D.J. Integrated 0.35 pm CMOS capacitance sensor with atto-farad sensitivity for single cell analysis. In Proceedings of the Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016. [Google Scholar]
- De Venuto, D.; Carrara, S.; Riccò, B. Design of an integrated low-noise read-out system for DNA capacitive sensors. Microelectron. J. 2009, 40, 1358–1365. [Google Scholar] [CrossRef]
- Petrellis, N.; Spathis, C.; Georgakopoulou, K.; Birbas, A. Capacitive sensor estimation based on self-configurable reference capacitance. Recent Patents Signal Process. 2013, 3, 12–21. [Google Scholar] [CrossRef]
- Lee, K.-H.; Choi, S.; Lee, J.O.; Yoon, J.-B.; Cho, G.-H. CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012. [Google Scholar] [CrossRef]
- Tanaka, K.; Kuramochi, Y.; Kurashina, T.; Okada, K.; Matsuzawa, A. A 0.026 mm 2 capacitance-to-digital converter for biotelemetry applications using a charge redistribution technique. In Proceedings of the 2007 IEEE Asian Solid-State Circuits Conference, Jeju, Korea, 12–14 November 2007. [Google Scholar] [CrossRef]
- Alhoshany, A.; Salama, K.N. A precision, energy-efficient, oversampling, noise-shaping differential SAR capacitance-to-digital converter. IEEE Trans. Instrum. Meas. 2018. [Google Scholar] [CrossRef]
- Lu, M.S.-C.; Chen, Y.-C.; Huang, P.-C. 5×5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Biosens. Bioelectron. 2010, 26, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.-Y.; Lu, M.S.-C. A CMOS magnetic microbead-based capacitive biosensor array with on-chip electromagnetic manipulation. Biosens. Bioelectron. 2013, 45, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Naviasky, E.; Datta-Chaudhuri, T.; Abshire, P. High resolution capacitance sensor array for real-time monitoring of cell viability. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014. [Google Scholar] [CrossRef]
- Gaggatur, J.S.; Banerjee, G. High gain capacitance sensor interface for the monitoring of cell volume growth. In Proceedings of the 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID), Hyderabad, India, 7–11 January 2017. [Google Scholar]
- Senevirathna, B.; Castro, A.; Dandin, M.; Smela, E.; Abshire, P. Lab-on-cmos capacitance sensor array for real-time cell viability measurements with I2C readout. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016. [Google Scholar]
- Senevirathna, B.; Lu, S.; Abshire, P. Characterization of a high dynamic range lab-on-cmos capacitance sensor array. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017. [Google Scholar]
- Ciccarella, P.; Carminati, M.; Sampietro, M.; Ferrari, G. 28.7 CMOS monolithic airborne-particulate-matter detector based on 32 capacitive sensors with a resolution of 65zF rms. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016. [Google Scholar]
- Carminati, M.; Ferrari, G.; Guagliardo, F.; Sampietro, M. Zeptofarad capacitance detection with a miniaturized cmos current front-end for nanoscale sensors. Sens. Actuators A 2011, 172, 117–123. [Google Scholar] [CrossRef]
- Ghafar-Zadeh, E.; Sawan, M.; Therriault, D. A 0.18-μm CMOS capacitive sensor lab-on-chip. Sens. Actuators A 2008, 141, 454–462. [Google Scholar] [CrossRef]
- Nabovati, G.; Ghafar-Zadeh, E.; Sawan, M. A 64 pixel ISFET-based biosensor for extracellular pH gradient monitoring. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015. [Google Scholar] [CrossRef]
- Prakash, S.B.; Abshire, P. A fully differential rail-to-rail capacitance measurement circuit for integrated cell sensing. In Proceedings of the 2007 IEEE Sensors, Atlanta, GA, USA, 28–31 October 2007. [Google Scholar]
- Evans, I.; York, T. Microelectronic capacitance transducer for particle detection. IEEE Sens. J. 2004, 4, 364–372. [Google Scholar] [CrossRef]
- Ghafar-Zadeh, E.; Sawan, M.; Chodavarapu, V.P.; Hosseini-Nia, T. Bacteria growth monitoring through a differential cmos capacitive sensor. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Ghafar-Zadeh, E.; Sawan, M. A hybrid microfluidic/cmos capacitive sensor dedicated to lab-on-chip applications. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.B.; Abshire, P. A fully differential rail-to-rail cmos capacitance sensor with floating-gate trimming for mismatch compensation. IEEE Trans. Circuits Syst. Regul. Pap. 2009, 56, 975–986. [Google Scholar] [CrossRef]
- Nabovati, G.; Ghafar-Zadeh, E.; Mirzaei, M.; Ayala-Charca, G.; Awwad, F.; Sawan, M. A new fully differential cmos capacitance to digital converter for lab-on-chip applications. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Mo, J.; Xu, S.; Shang, Y.; Wang, Z.; Huang, Z.; Yu, F. A new capacitance-to-frequency converter for on-chip capacitance measurement and calibration in CMOS technology. J. Electron. Test. 2016. [Google Scholar] [CrossRef]
- Yamane, R.; Iwasaki, H.; Dei, Y.; Cui, J.; Matsuoka, T. A capacitance detection circuit for on-chip microparticle manipulation. In Proceedings of the 2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 19–20 June 2014. [Google Scholar]
- Ghafar-Zadeh, E.; Sawan, M. High accuracy differential capacitive circuit for bioparticles sensing applications. In Proceedings of the 48th Midwest Symposium on Circuits and Systems, Covington, KY, USA, 7–10 August 2005. [Google Scholar]
- Stagni, C.; Guiducci, C.; Benini, L.; Riccò, B.; Carrara, S.; Paulus, C.; Schienle, M.; Thewes, R. A fully electronic label-free DNA sensor chip. IEEE Sens. J. 2007, 7, 577–585. [Google Scholar] [CrossRef]
- Sylvester, D.; Chen, J.C.; Hu, C. Investigation of interconnect capacitance characterization using charge-based capacitance measurement (CBCM) technique and three-dimensional simulation. IEEE J. Solid State Circuits 1998, 33, 449–453. [Google Scholar] [CrossRef]
- Chen, J.C.; McGaughy, B.W.; Sylvester, D.; Hu, C. An on-chip, attofarad interconnect charge-based capacitance measurement (CBCM) technique. In Proceedings of the International Electron Devices Meeting. Technical Digest, San Francisco, CA, USA, 8–11 December 1996. [Google Scholar]
- Ghafar-Zadeh, E.; Sawan, M. Charge-based capacitive sensor array for CMOS-based laboratory-on-chip applications. IEEE Sens. J. 2008, 8, 325–332. [Google Scholar] [CrossRef]
- Widdershoven, F.; Cossettini, A.; Laborde, C.; Bandiziol, A.; van Swinderen, P.P.; Lemay, S.G.; Selmi, L. A cmos pixelated nanocapacitor biosensor platform for high-frequency impedance spectroscopy and imaging. IEEE Trans. Biomed. Circuits Syst. 2018. [Google Scholar] [CrossRef]
- Jun-Rui, Z.; Nanolab, I.A.; Mazza, M. Low-energy biomarker detection through charge-based impedance measurements. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar]
- Hassanli, K.; Sayedi, S.M.; Dehghani, R.; Jalili, A.; Wikner, J.J. A low-power wide tuning-range CMOS current-controlled oscillator. Integr. VLSI J. 2016, 55, 57–66. [Google Scholar] [CrossRef]
- Johnson, D.J.; Dixon, D.J. Bi-Directional Linear Feedback Shift Register. U.S. Patent 5790626A, 4 August 1998. [Google Scholar]
- Hassanli, K.; Sayedi, S.M.; Dehghani, R.; Jalili, A.; Wikner, J.J. A highly sensitive, low-power, and wide dynamic range cmos digital pixel sensor. Sens. Actuators A 2015, 236, 82–91. [Google Scholar] [CrossRef]
- Lai, F.; Hwang, W. Differential cascode voltage switch with the pass-gate (DCVSPG) logic tree for high performance CMOS digital systems. In Proceedings of the 1993 International Symposium on VLSI Technology, Systems, and Applications, Taipei, Taiwan, 12–14 May 1993. [Google Scholar]
- Zhou, J.; Liu, J.; Zhou, D. Reduced setup time static d flip-flop. Electron. Lett. 2001, 37, 279–280. [Google Scholar] [CrossRef]
The Length of LFSR | Feedback Polynomials for Forward Counting | Feedback Polynomials for Reverse Counting |
3 bits | | |
4 bits | | |
5 bits | | |
State | Input of Counter | S0 (INC) | S1 (CYC) | S2 (CNT) | SM0 (of Sel3) | SM1 (of-Sel3) | SM2 (of-Sel3) | S (of-Sel3) | Sb (of-Sel3) |
---|---|---|---|---|---|---|---|---|---|
Initialization | RCLK | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Down counting (Calibration for ΔC = 0) | The output of CCO | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Saving | Ground voltage (GND) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Up counting | The output of CCO | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
Cycling | RCLK | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
Parameter | Value |
---|---|
Technology | 0.18 μm |
Supply voltage | 1.8 V |
Each electrode area | 80 μm × 295 μm |
Interface circuit area | 24 μm × 300.98 μm |
Power consumption (for 35 fF) | ~ 103 μW |
▪ CBCM and current mirrors | 4.2 μW |
▪ CCO | 90.234 μW |
▪ Digital circuit | 1.3 μW |
Sensitivity | 138 pulses/fF |
Sampling frequency | 100 kHz |
Dynamic range | 70 fF |
Linearity (R2) | 0.9996 |
Resolution | |
▪ In the ideal case without considering the error due to nonlinearity | ~8 aF |
▪ By considering the maximum error due to nonlinearity | ~873 aF |
▪ With interpolation and pre-distortion | ~10 aF |
Power | Chip Area (μm2) | The Number of Arrays | Voltage Output Type | Capacitance Resolution (aF) | Sensitivity | IDR of ΔC (fF) | Supply Voltage (V) | Tech. | Principle | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
29 μW | 105 | 16 × 16 | Analog | 450 aF | 55 mV/fF | 0.45 −57 | - | 0.25 μm | 1 ChR (2 ChS) | [20] |
- | - | 320 × 320 | Analog | 21 aF | 345 mV/fF | - | - | 0.35 μm | ChR (3 CSA) | [15] |
8 mW | 3.6 × 105 | 4 × 4 | Digital | 17.5 aF | 590 kHz/fF | 12 fF | 3.3 | 0.35 μm | 4 C2F (5 RO) | [23] |
84 mW | 6 × 106 | Digital | 0.065 aF | 32 | <1 | 3.3 | 0.35 μm | Lock-in | [43] | |
- | 6.272 × 105 | 4 | Analog | 10 | 1 V/fF | 2 | 5 | 0.8 μm | 6 CBCM | [61] |
- | 2 × 106 | 3 | Digital | 10 | 255 mV/fF | ~2.7 | 1.8 | 0.18 μm | CBCM | [62] |
8 3.06 × 10−3 μW (core) (at 1 kHz) 1.65 × 102 μW (Buffer amplifier) | 7 1.45 × 102 | 6 × 6 | Analog | 15 | 200 mV/fF | 25 | ±3 | 0.5 μm | CBCM | [64] |
580 (at 150 kHz) | 104 | 1 | Digital | 10 | 350 mV/fF | 10 | ±3.3 | 0.35 μm | CBCM | [65] |
910 pJ/cycle at (1 kHz) | 4.3 × 104 | 1 | Analog | - | 23.4 mV/pF | - | - | 0.35 μm | CBCM | [74] |
1.5 × 104 μW (for 1–70 MHz) | 2.5 × 1012 | 256 × 256 | Digital | 1 | - | <1.8 | 1.2 | 90 nm | CBCM | [73] |
103 μW (for 35 fF at 100 kHz) | 6.45 × 104 | 1 | Digital | 9 873, 10 10 | 138 pulses/fF | ~70 | 1.8 | 0.18 μm | CBCM | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forouhi, S.; Dehghani, R.; Ghafar-Zadeh, E. Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry. Sensors 2018, 18, 3370. https://doi.org/10.3390/s18103370
Forouhi S, Dehghani R, Ghafar-Zadeh E. Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry. Sensors. 2018; 18(10):3370. https://doi.org/10.3390/s18103370
Chicago/Turabian StyleForouhi, Saghi, Rasoul Dehghani, and Ebrahim Ghafar-Zadeh. 2018. "Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry" Sensors 18, no. 10: 3370. https://doi.org/10.3390/s18103370
APA StyleForouhi, S., Dehghani, R., & Ghafar-Zadeh, E. (2018). Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry. Sensors, 18(10), 3370. https://doi.org/10.3390/s18103370