Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly
Abstract
:1. Introduction
2. Analysis of the Vignetting
3. Methods
3.1. Side-Slither Data Standardization Based on the Linear Features
3.2. Sample Points Extraction Using the GLCM
3.3. Coefficients Calculation Based on the Power-Law Model
4. Results
4.1. Experimental Data
4.2. Accuracy Assessment for the Results from Group B
4.3. Accuracy Assessment for the Results from Group C
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luppino, G.A.; Tonry, J.; Kaiser, N. The current state of the art in large CCD mosaic cameras, and a new strategy for wide field, high resolution optical imaging. In Optical Detectors for Astronomy II; Amico, P., Beletic, W.J., Eds.; Springer: Basel, Switzerland, 2000; pp. 119–132. [Google Scholar]
- Liedtke, J. Quickbird-2 system description and product overview. In Proceedings of the JACIE Workshop, Washington, DC, USA, 25–27 March 2002; pp. 25–27. [Google Scholar]
- Jacobsen, K. Calibration of optical satellite sensors. In Proceedings of the International Calibration and Orientation Workshop EuroCOW, Castelldefels, Spain, 30 January–1 February 2008. [Google Scholar]
- Updike, T.; Comp, C. Radiometric Use of Worldview-2 Imagery; Technical Note; Digital Globe: Westminster, CO, USA, 2010; pp. 1–17. [Google Scholar]
- Chen, S.; Yang, B.; Wang, H. Design and Experiment of the Space Camera; Aerospace Publishing Company: London, UK, 2003. [Google Scholar]
- Yu, W. Practical anti-vignetting methods for digital cameras. IEEE Trans. Consum. Electr. 2004, 50, 975–983. [Google Scholar]
- Haitao, F.Q.H.J.Y. A novel image anti-vignetting method. Electr. Sci.Technol. 2007, 10, 24. [Google Scholar]
- Yu, W.; Chung, Y.; Soh, J. Vignetting distortion correction method for high quality digital imaging. In Proceedings of the IEEE 17th International Conference on Pattern Recognition ICPR 2004, Cambridge, UK, 23–26 August 2004; pp. 666–669. [Google Scholar]
- Zheng, Y.; Lin, S.; Kang, S.B.; Xiao, R.; Gee, J.C.; Kambhamettu, C. Single-image vignetting correction from gradient distribution symmetries. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1480–1494. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Xinhua, H.; Li, W. A compensation algorithm of image based on gaussian quadrics fitting. J. Huazhong Univ. Sci. Technol. Nat. Sci. Chin. Ed. 2004, 32, 43–45. [Google Scholar]
- Ying, D.; Jingtao, F.; Wei, Q.; Cheng, H. Nonlinear compensation for optical vignetting in vision systems. J. Tsinghua Univ. 2017, 57, 702–706. [Google Scholar]
- Kim, Y.-N.; Sim, D.-G. Vignetting and illumination compensation for omni-directional image generation on spherical coordinate. In Proceedings of the IEEE 16th International Conference on Artificial Reality and Telexistence—Workshops 2006 (ICAT’06), Hangzhou, China, 29 November–2 December 2006; pp. 413–418. [Google Scholar]
- Asada, N.; Amano, A.; Baba, M. Photometric calibration of zoom lens systems. In Proceedings of the IEEE 13th International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; pp. 186–190. [Google Scholar]
- Li, X.; Liu, H.; Sun, J.; Xue, C.; Ren, J.; Zhang, L.; Chen, C.; Ren, J. Relative radiometric calibration for space camera with optical focal plane assembly. Acta Opt. Sin. 2017, 37, 0828006. [Google Scholar]
- Tao, M. Research on the vignetting correction method of mosaic images based on reflector. Changchun Grad. Univ. Chin. Acad. Sci. 2012. [Google Scholar] [CrossRef]
- Zenin, V.A.; Eremeev, V.V.; Kuznetcov, A.E. Algorithms for relative radiometric correction in earth observing systems resource-p and canopus-v. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B6, 189–191. [Google Scholar] [CrossRef]
- Kim, S.J.; Pollefeys, M. Robust radiometric calibration and vignetting correction. IEEE Transp. Pattern Anal. Mach. Intell. 2008, 30, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.S. Worldview-1 pre and post-launch radiometric calibration and early on-orbit characterization. In Optical Engineering + Applications, Proceedings of the SPIE 2008 Earth Observing Systems XIII, San Diego, CA, USA, 20 August 2008; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; pp. 708111–708116. [Google Scholar]
- Li, H.; Man, Y.-Y. Relative radiometric calibration method based on linear CCD imaging the same region of non-uniform scene. In Proceedings of the International Symposium on Optoelectronic Technology and Application: Optical Remote Sensing Technology and Applications, Beijing, China, 18 November 2014; pp. 929906–929909. [Google Scholar]
- Henderson, B.G.; Krause, K.S. Relative radiometric correction of quickbird imagery using the side-slither technique on orbit. In Proceedings of the Optical Science and Technology, the SPIE 49th Annual Meeting, Denver, CO, USA, 26 October 2004; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; pp. 426–436. [Google Scholar]
- Anderson, C.; Naughton, D.; Brunn, A.; Thiele, M. Radiometric correction of rapideye imagery using the on-orbit side-slither method. In Proceedings of the SPIE Image and Signal Processing for Remote Sensing, Prague, Czech Republic, 27 October 2011; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; pp. 818008–818015. [Google Scholar]
- Pesta, F.; Bhatta, S.; Helder, D.; Mishra, N. Radiometric non-uniformity characterization and correction of landsat 8 oli using earth imagery-based techniques. Remote Sens. 2015, 7, 430–446. [Google Scholar] [CrossRef]
- Kubik, P.; Pascal, W. Amethist: A method for equalization thanks to histograms. In Proceedings of the SPIE 5570, Sensors, Systems, and Next-Generation Satellites VIII, Maspalomas, Spain, 4 November 2004; Volume 5570, pp. 256–267. [Google Scholar]
- Chunling, L.; Zhaoguang, B. Characteristics and typical applications of gf-1 satellite. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1246–1249. [Google Scholar]
- Gerace, A.; Schott, J.; Gartley, M.; Montanaro, M. An analysis of the side slither on-orbit calibration technique using the dirsig model. Remote Sens. 2014, 6, 10523–10545. [Google Scholar] [CrossRef]
- Fan, B.; Cai, W.; Zhang, X. Technology of the multi-spectral camera of zy-3 satellite. Spacecr. Recover. Remote Sens. 2012, 33, 75–84. [Google Scholar]
- Bei, C.; Fuqiang, L.I.; Chang, J. Calculation of overlapping pixels in focal plane based on optical butting. OptoElectron. Eng. 2016, 43, 99–103. [Google Scholar]
- Deng, G.; Cahill, L. An adaptive gaussian filter for noise reduction and edge detection. In Proceedings of the 1993 IEEE Conference Record, Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; pp. 1615–1619. [Google Scholar]
- Vincent, O.R.; Folorunso, O. A descriptive algorithm for sobel image edge detection. In Proceedings of the Informing Science & IT Education Conference (InSITE), Macon, GA, USA, 12–15 June 2009; Informing Science Institute California: Santa Rosa, CA, USA, 2009; pp. 97–107. [Google Scholar]
- Matas, J.; Galambos, C.; Kittler, J. Robust detection of lines using the progressive probabilistic hough transform. Comp. Vis. Image Underst. 2000, 78, 119–137. [Google Scholar] [CrossRef]
- Gadallah, F.L.; Csillag, F.; Smith, E.J.M. Destriping multisensor imagery with moment matching. Int. J. Remote Sens. 2000, 21, 2505–2511. [Google Scholar] [CrossRef]
- Mohanaiah, P.; Sathyanarayana, P.; GuruKumar, L. Image texture feature extraction using glcm approach. Int. J. Sci. Res. Publ. 2013, 3, 1. [Google Scholar]
- Justusson, B. Median filtering: Statistical properties. In Two-Dimensional Digital Signal Processing II; Huang, T.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 161–196. [Google Scholar]
- Madsen, K.; Nielsen, H.B.; Tingleff, O. Methods for Non-Linear Least Squares Problems; Technical University of Denmark: Copenhagen, Denmark, 1999. [Google Scholar]
- Kordecki, A.; Bal, A.; Palus, H. Local polynomial model: A new approach to vignetting correction. In Proceedings of the Ninth International Conference on Machine Vision, Nice, France, 17 March 2017; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; pp. 103412C–103415C. [Google Scholar]
- Hu, Y.; Zhang, Y. Analysis of relative radiometric calibration accuracy of space camera. Spacecr. Recover. Remote Sens. 2007, 4, 012. [Google Scholar]
- Krause, K.S. Relative radiometric characterization and performance of the quickbird high-resolution commercial imaging satellite. In Optical Science and Technology, Proceedings of the SPIE 49th Annual Meeting, Denver, CO, USA, 26 October 2004; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; pp. 35–44. [Google Scholar]
- Krause, K.S. Quickbird relative radiometric performance and on-orbit long term trending. In Proceedings of the SPIE Optics + Photonics, San Diego, CA, USA, 2006; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; pp. 62912P–62960P. [Google Scholar]
- Chen, J.; Shao, Y.; Guo, H.; Wang, W.; Zhu, B. Destriping cmodis data by power filtering. IEEE Transact. Geosci. Remote Sens. 2003, 41, 2119–2124. [Google Scholar] [CrossRef]
- Corsini, G.; Diani, M.; Walzel, T. Striping removal in mos-b data. IEEE Transact. Geosci. Remote Sens 2000, 38, 1439–1446. [Google Scholar] [CrossRef]
- Morrone, M.C.; Owens, R.A. Feature detection from local energy. Pattern Recognit. Lett. 1987, 6, 303–313. [Google Scholar] [CrossRef]
Group Name | Object Type | Imaging Mode | Uses | Imaging Time |
---|---|---|---|---|
Group A | Side-slither data | Side-slither scan | Calibration | 3 January 2015 |
Group B | Side-slither data | Side-slither scan | Verification | 16 March 2015 |
Group C | Water | Classical | Verification | 27 February 2015 |
City | Classical | Verification | 24 January 2015 | |
Hill | Classical | Verification | 13 April 2015 | |
Desert | Classical | Verification | 21 March 2015 |
Region | Correction Method | Mean Value (MV) | Changes in MV (%) | RA (%) | Average of Streaking Metrics | Maximum Streaking Metrics |
---|---|---|---|---|---|---|
Low-brightness | Raw data (non-vignetting area) | 152.6908 | / | / | / | / |
Laboratory coefficients | 155.3894 | 1.7674 | 4.8410 | 0.1267 | 0.7451 | |
On-orbit coefficients | 157.0680 | 2.8667 | 2.5901 | 0.2236 | 0.7771 | |
polynomial fitting | 157.7402 | 3.3069 | 0.0971 | 0.0181 | 0.7082 | |
Proposed method | 152.3096 | −0.2496 | 0.0588 | 0.0163 | 0.0810 | |
Middle brightness | Raw data (non-vignetting area) | 380.5334 | / | / | / | / |
Laboratory coefficients | 384.6584 | 1.0840 | 1.5108 | 0.0291 | 0.3089 | |
On-orbit coefficients | 385.6701 | 1.3499 | 0.8300 | 0.0373 | 0.1003 | |
polynomial fitting | 387.2508 | 1.7653 | 0.0519 | 0.0152 | 0.2815 | |
Proposed method | 381.9701 | 0.3775 | 0.0361 | 0.0066 | 0.0365 | |
High-brightness | Raw data (non-vignetting area) | 672.4643 | / | / | / | / |
Laboratory coefficients | 676.9013 | 0.6598 | 1.6432 | 0.0275 | 0.3593 | |
On-orbit coefficients | 669.9590 | −0.3726 | 0.6241 | 0.0155 | 0.0994 | |
polynomial fitting | 679.6329 | 1.0660 | 0.0439 | 0.0073 | 0.4815 | |
Proposed method | 672.8545 | 0.0580 | 0.0334 | 0.0022 | 0.0131 |
Region | Correction Method | Mean Value (MV) | Changes in MV (%) | IF | Average of Streaking Metrics | Maximum Streaking Metrics | Energy Function |
---|---|---|---|---|---|---|---|
Water | Raw data (non-vignetting area) | 105.7267 | / | / | / | / | 3.0580 |
Laboratory coefficients | 117.1819 | 10.8348 | 14.3114 | 0.2458 | 1.7952 | 3.5212 | |
On-orbit coefficients | 109.9966 | 4.0386 | 16.0074 | 0.1946 | 1.0696 | 3.4602 | |
polynomial fitting | 118.5100 | 12.0909 | 20.2544 | 0.1485 | 0.9639 | 3.1627 | |
Proposed method | 107.0849 | 1.2846 | 23.8594 | 0.0993 | 0.4933 | 3.5878 | |
City | Raw data (non-vignetting area) | 269.2928 | / | / | / | / | 27.3414 |
Laboratory coefficients | 267.9996 | −0.4802 | 12.9659 | 0.1782 | 0.7290 | 32.7385 | |
On-orbit coefficients | 261.6164 | −2.8506 | 11.5552 | 0.1627 | 0.7549 | 31.1614 | |
polynomial fitting | 290.2502 | 7.7824 | 10.7418 | 0.1694 | 0.6984 | 31.4548 | |
Proposed method | 260.9379 | −3.1025 | 12.6999 | 0.1622 | 0.6545 | 33.0428 | |
Hill | Raw data (non-vignetting area) | 374.2867 | / | / | / | / | 9.9862 |
Laboratory coefficients | 382.8244 | 2.2811 | 21.0964 | 0.0796 | 0.3706 | 10.9966 | |
On-orbit coefficients | 376.2886 | 0.5349 | 27.1364 | 0.0793 | 0.3167 | 13.3237 | |
polynomial fitting | 378.1881 | 1.0424 | 24.0872 | 0.0710 | 0.5042 | 11.3148 | |
Proposed method | 377.4831 | 0.8534 | 27.6778 | 0.0701 | 0.3029 | 13.4969 | |
Desert | Raw data (non-vignetting area) | 675.8800 | / | / | / | / | 11.1431 |
Laboratory coefficients | 662.9942 | −1.9065 | 36.8014 | 0.0379 | 0.7256 | 13.3153 | |
On-orbit coefficients | 679.8685 | 0.5901 | 39.4644 | 0.0464 | 0.3239 | 13.5696 | |
polynomial fitting | 673.6525 | 0.3296 | 44.0960 | 0.0835 | 0.4801 | 12.0047 | |
Proposed method | 675.4349 | −0.0659 | 50.6899 | 0.0113 | 0.1467 | 15.4989 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Pan, J.; Wang, M.; Zhu, Y. Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly. Sensors 2018, 18, 3402. https://doi.org/10.3390/s18103402
Chen C, Pan J, Wang M, Zhu Y. Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly. Sensors. 2018; 18(10):3402. https://doi.org/10.3390/s18103402
Chicago/Turabian StyleChen, Chaochao, Jun Pan, Mi Wang, and Ying Zhu. 2018. "Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly" Sensors 18, no. 10: 3402. https://doi.org/10.3390/s18103402
APA StyleChen, C., Pan, J., Wang, M., & Zhu, Y. (2018). Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly. Sensors, 18(10), 3402. https://doi.org/10.3390/s18103402