Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors
Abstract
:1. Introduction
1.1. Resistive
1.2. Inductive
1.3. Capacitive
1.4. Fiber Bragg Grating
2. Sensor Design
2.1. Piezoresistive Theory
2.2. Sensor Description
3. Finite Element Model
4. Analytical Model for Five-Layer Structure
5. Results
5.1. FEM vs. Analytical Model
5.2. Effect of Surface Trench on Signal Output
5.3. Geometric Optimization of Surface Features
5.3.1. Out-of-Plane Shear Stress Sensor
5.3.2. Out-of-Plane Normal Stress Sensor
6. Microfabrication Process Flow
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kolitawong, C.; Giacomin, A.J.; Johnson, L.M. Invited article: Local shear stress transduction. Rev. Sci. Instrum. 2010, 81, 021301. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, T. Shear force sensor for robots. In Proceedings of the IEEE International Symposium on Industrial Electronics, Warsaw, Poland, 17–20 June 1996; pp. 49–53. [Google Scholar]
- Kulinyi, S.; Vegvari, R.; Pongracz, A.; Nagy, A.; Karpati, T.; Adam, M.; Battistig, G.; Bársony, I. Flexible packaging for tyre integrated shear force sensor. In Proceedings of the 2012 IEEE Sensors, Taipei, Taiwan, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Noda, K.; Hoshino, K.; Matsumoto, K.; Shimoyama, I. A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material. Sens. Actuators Phys. 2006, 127, 295–301. [Google Scholar] [CrossRef]
- Hwang, E.S.; Seo, J.H.; Kim, Y.J. A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J. Microelectromech. Syst. 2007, 16, 556–563. [Google Scholar] [CrossRef]
- Celzard, A.; Furdin, G.; Mareche, J.F.; McRae, E. Non-linear current-voltage characteristics in anisotropic epoxy resin-graphite flake composites. J. Mater. Sci. 1997, 32, 1849–1853. [Google Scholar] [CrossRef]
- Oskouyi, A.B.; Sundararaj, U.; Mertiny, P. Current-voltage characteristics of nanoplatelet-based conductive nanocomposites. Nanoscale Res. Lett. 2014, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Madrid, L.; Matute, A.; Bareño, J.O.; Parra Vargas, C.A.; Gutierrez Velásquez, E.I. Underlying physics of conductive polymer composites and force sensing resistors (FSRs). A study on creep response and dynamic loading. Materials 2017, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Madrid, L.; Palacio, C.A.; Matute, A.; Parra Vargas, C.A. Underlying physics of conductive polymer composites and force sensing resistors (fsrs) under static loading conditions. Sensors 2017, 17, 2108. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Beebe, D.J. A silicon-based shear force sensor: development and characterization. Sens. Actuators Phys. 2000, 84, 33–44. [Google Scholar] [CrossRef]
- Wang, L.; Beebe, D.J. Characterization of a silicon-based shear-force sensor on human subjects. IEEE Trans. Biomed. Eng. 2002, 49, 1340–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, M.C.; Fang, Y.K.; Ju, M.-S.; Chen, G.-S.; Ho, J.-J.; Yang, C.H.; Wu, P.M.; Wu, G.S.; Chen, T.Y.-F. A contact-type piezoresistive micro-shear stress sensor for above-knee prosthesis application. J. Microelectromech. Syst. 2001, 10, 121–127. [Google Scholar] [CrossRef]
- Shi, X.; Cheng, C.H.; Chao, C.; Wang, L.; Zheng, Y. A piezoresistive normal and shear force sensor using liquid metal alloy as gauge material. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, 5–8 March 2012; pp. 483–486. [Google Scholar]
- Shi, X.; Cheng, C.-H.; Zheng, Y.; Wai, P.K.A. An EGaIn-based flexible piezoresistive shear and normal force sensor with hysteresis analysis in normal force direction. J. Micromech. Microeng. 2016, 26, 105020. [Google Scholar] [CrossRef]
- Lemke, B.; Baumann, M.; Gieschke, P.; Baskaran, R.; Paul, O. Piezoresistive CMOS-compatible sensor for out-of-plane shear stress. Sens. Actuators Phys. 2013, 189, 488–495. [Google Scholar] [CrossRef]
- Djuric, S.M.; Nagy, L.F.; Damnjanovic, M.S. Detection of ground reaction force using a miniaturized inductive displacement sensor. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, 6–8 September 2010; pp. 7–12. [Google Scholar]
- Damnjanovic, M.S.; Zivanov, L.D.; Nagy, L.F.; Djuric, S.M.; Biberdzic, B.N. A novel approach to extending the linearity range of displacement inductive sensor. IEEE Trans. Magn. 2008, 44, 4123–4126. [Google Scholar] [CrossRef]
- Du, L.; Zhu, X.; Zhe, J. An inductive sensor for real-time measurement of plantar normal and shear forces distribution. IEEE Trans. Biomed. Eng. 2015, 62, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.-K.; Chang, H.-C.; Fang, W. Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface. J. Micromech. Microeng. 2018, 28, 044005. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.T.; Lin, C.L.; Huang, X.H.; Cheng, M.Y.; Yang, Y.J. A flexible tactile sensing array for robot applications. In Proceedings of the 2010 IEEE Sensors, Kona, HI, USA, 1–4 November 2010; pp. 2599–2602. [Google Scholar]
- Sundara-Rajan, K.; Rowe, G.I.; Simon, A.J.; Klute, G.K.; Ledoux, W.R.; Mamishev, A.V. Shear sensor for lower limb prosthetic applications. In Proceedings of the 2009 First Annual ORNL Biomedical Science Engineering Conference, Oak Ridge, TN, USA, 18–19 March 2009; pp. 1–4. [Google Scholar]
- Lee, H.K.; Chung, J.; Chang, S.I.; Yoon, E. Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 2008, 17, 934–942. [Google Scholar] [CrossRef]
- Tjin, S.C.; Suresh, R.; Ngo, N.Q. Fiber Bragg grating based shear-force sensor: modeling and testing. J. Light. Technol. 2004, 22, 1728–1733. [Google Scholar] [CrossRef]
- Candiani, A.; Konstantaki, M.; Pamvouxoglou, A.; Pissadakis, S. A shear sensing pad, based on ferrofluidic actuation in a microstructured optical fiber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 210–216. [Google Scholar] [CrossRef]
- Suhling, J.C.; Jaeger, R.C. Silicon piezoresistive stress sensors and their application in electronic packaging. IEEE Sens. J. 2001, 1, 14–30. [Google Scholar] [CrossRef]
- Gharib, H.H.; Moussa, W.A. On the feasibility of a new approach for developing a piezoresistive 3D Stress sensing rosette. IEEE Sens. J. 2011, 11, 1861–1871. [Google Scholar] [CrossRef]
- Tufte, O.N.; Chapman, P.W.; Long, D. Silicon diffused-element piezoresistive diaphragms. J. Appl. Phys. 1962, 33, 3322–3327. [Google Scholar] [CrossRef]
- Singh, R.; Ngo, L.L.; Seng, H.S.; Mok, F.N.C. A silicon piezoresistive pressure sensor. In Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications, Christchurch, New Zealand, 29–31 January 2002; pp. 181–184. [Google Scholar]
- Matsuoka, Y.; Yamamoto, Y.; Yamada, K.; Shimada, S.; Tanabe, M.; Yasukawa, A.; Matsuzaka, H. Characteristic analysis of a pressure sensor using the silicon piezoresistance effect for high-pressure measurements. J. Micromech. Microeng. 1995, 5, 25. [Google Scholar] [CrossRef]
- Bae, B.; Flachsbart, B.R.; Park, K.; Shannon, M.A. Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J. Micromech. Microeng. 2004, 14, 1597. [Google Scholar] [CrossRef]
- Petersen, K.; Brown, J.; Vermeulen, T.; Barth, P.; Mallon, J.; Bryzek, J. Ultra-stable, high-temperature pressure sensors using silicon fusion bonding. Sens. Actuators Phys. 1990, 21, 96–101. [Google Scholar] [CrossRef]
- Chau, K.H.L.; Fung, C.D.; Harris, P.R.; Dahrooge, G.A. A versatile polysilicon diaphragm pressure sensor chip. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 8–11 December 1991; pp. 761–764. [Google Scholar]
- Santosh, M.; Behera, K.C.; Bose, S.C. Design of an on chip read-out circuit for piezo-resistive MEMS pressure sensor. In Proceedings of the 2012 International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 15–16 March 2012; pp. 94–98. [Google Scholar]
- Kim, J.; Lee, H.; Cha, S.; Choi, B. Fabrication and evaluation of implantable pressure sensor using strain gauge. In Proceedings of the 5th 2012 Biomedical Engineering International Conference, Ubon Ratchathani, Thailand, 5–7 December 2012; pp. 1–4. [Google Scholar]
- Sathyanarayanan, S.; Juliet, A.V. Design and simulation of touch mode MEMS capacitive pressure sensor. In Proceedings of the 2010 International Conference on Mechanical and Electrical Technology, Singapore, 10–12 September 2010; pp. 180–183. [Google Scholar]
- Chang, S.-P.; Allen, M.G. Capacitive pressure sensors with stainless steel diaphragm and substrate. J. Micromech. Microeng. 2004, 14, 612. [Google Scholar] [CrossRef]
- Zhou, M.-X.; Huang, Q.-A.; Qin, M.; Zhou, W. A novel capacitive pressure sensor based on sandwich structures. J. Micromech. Syst. 2005, 14, 1272–1282. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, X.; Zhan, Z.; Xu, B.; Lv, W.; Wang, L.; Sun, D. Design and simulation of fully-symmetrical resonant pressure sensor. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, 5–8 March 2012; pp. 702–707. [Google Scholar]
- Ahmad, H.; Chong, W.Y.; Thambiratnam, K.; Zulklifi, M.Z.; Poopalan, P.; Thant, M.M.M.; Harun, S.W. High Sensitivity Fiber Bragg Grating Pressure Sensor Using Thin Metal Diaphragm. IEEE Sens. J. 2009, 9, 1654–1659. [Google Scholar] [CrossRef]
- Volkersen, O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit Konstanten Laschenquerschnitten. Luftfahrtfor Schung 1938, 15, 41–47. [Google Scholar]
- Goland, M. The Stresses in Cemented Joints. J. Appl. Mech. Trans ASME 1944, 66, 17–27. [Google Scholar]
Sensor Type | Sensing Mechanism | Load Range | References |
---|---|---|---|
| Resistive | 0–80 KPa | [27] |
20–200 KPa | [28] | ||
0–50 MPa | [29] | ||
0–100 KPa | [30] | ||
| 103.4 KPa–34.5 MPa | [31] | |
| 0–13.8 MPa | [32] | |
0–137.9 KPa | [33] | ||
| 0–10 KPa | [34] | |
| Capacitive | 0–10 MPa | [35] |
0–178 KPa | [36] | ||
80–106 KPa | [37] | ||
| Resonant | 0–550 KPa | [38] |
| Optical | 0–689.5 KPa | [39] |
Components | Dimensions, mm | Material Properties |
---|---|---|
Silicon chip | 7 × 7 × 0.3 | C11 = 165.7 GPa C12 = 63.9 GPa C44 = 79.6 GPa |
ACA | 7 × 7 × 0.07 | E = 3.3 GPa, ν = 0.3 |
PCB | 180 × 22.73 × 1.57 | E = 23.73 GPa, ν = 0.117 |
Gold Bumps | Φ 0.35 × 0.07 | E = 77.2 GPa, ν = 0.3 |
Stress Transmission Element | 7 × 7 × 2 | E = 200 GPa, ν = 0.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, L. Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors. Sensors 2018, 18, 3737. https://doi.org/10.3390/s18113737
Zhang Y, Li L. Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors. Sensors. 2018; 18(11):3737. https://doi.org/10.3390/s18113737
Chicago/Turabian StyleZhang, Yi, and Lin Li. 2018. "Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors" Sensors 18, no. 11: 3737. https://doi.org/10.3390/s18113737
APA StyleZhang, Y., & Li, L. (2018). Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors. Sensors, 18(11), 3737. https://doi.org/10.3390/s18113737