Sandwich Electrochemical Immunosensor for Early Detection of Tuberculosis Based on Graphene/Polyaniline-Modified Screen-Printed Gold Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Synthesis of Iron Oxide Magnetic Nanoparticles Coated with Gold (Fe3O4/Au MNPs)
2.4. Immobilization of Primary Anti-CFP10 Antibody on Fe3O4/Au MNPs
2.5. Preparation of GP/PANI Nanocomposite
2.6. Modification of SPGE-Based on Sandwich Immunoassay Format
3. Results and Discussion
3.1. Characterization of GP/PANI Nanocomposite Material
3.2. Characterization of GP/PANI-Modified SPGE
3.3. Sandwich Electrochemical Immunosensor for CFP10 Detection Using GP/PANI-Modified SPGE
3.4. Reproducibility of the Developed Immunosensor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sypabekova, M.; Bekmurzayeva, A.; Wang, R.; Li, Y.; Nogues, C.; Kanayeva, D. Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64. Tuberculosis 2017, 104, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Torati, S.R.; Reddy, V.; Yoon, S.S.; Kim, C. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens. Bioelectron. 2016, 78, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Nurmalasari, R.; Gaffar, S.; Hartati, Y.W. Label-free electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis using gold electrode modified by self-assembled monolayer of thiol. Procedia Chem. 2015, 17, 111–117. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2016. Available online: http://apps.who.int/medicinedocs/documents/s23098en/s23098en.pdf (accessed on 30 October 2017).
- Kim, J.; Lee, J.; Lee, K.I.; Park, T.J.; Kim, H.J.; Lee, J. Rapid monitoring of CFP-10 during culture of Mycobacterium tuberculosis by using a magnetophoretic immunoassay. Sens. Actuators B Chem. 2013, 177, 327–333. [Google Scholar] [CrossRef]
- Sun, J.R.; Lee, S.Y.; Perng, C.L.; Lu, J.J. Detecting Mycobacterium tuberculosis in bactec MGIT 960 cultures by inhouse IS6110-based PCR assay in routine clinical practice. J. Formos. Med. Assoc. 2009, 108, 119–125. [Google Scholar] [CrossRef]
- Díaz-González, M.; González-García, M.B.; Costa-García, A. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosens. Bioelectron. 2005, 20, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007, 73, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 2011, 136, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Minotti, C.; Moscone, D.; Palleschi, G.; Arduini, F. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens. Bioelectron. 2017, 93, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, J.-H.; Yang, C.-P.; Yu, M.; Liu, P. Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sens. Actuators B Chem. 2011, 157, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Gu, S.; Li, W.; Chen, T.; Xu, Q.; Wang, W. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens. Bioelectron. 2014, 56, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.F.; Lim, H.N.; Shams, N.; Jayabal, S.; Pandikumar, A.; Huang, N.M. Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen. Mater. Sci. Eng. C 2016, 58, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Radhapyari, K.; Kotoky, P.; Das, M.R.; Khan, R. Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 2013, 111, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jang, D.; Xiang, G.; Liu, F.; Liu, L.; Pu, X. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticles-polyaniline nanocomposite. Analyst 2014, 139, 5460–5465. [Google Scholar] [CrossRef] [PubMed]
- Kaul, K.L. Molecular detection of Mycobacterium tuberculosis: Impact on patient care. Clin. Chem. 2001, 47, 1553–1558. [Google Scholar] [PubMed]
- Kraus, G.; Clearly, T.; Miller, N.; Seivright, R.; Young, A.K.; Spruill, G.; Hnatyszyn, H.J. Rapid and specific detection of the Mycobacterium tuberculosis complex using fluorogenic probes and real-time PCR. Mol. Cell. Probes 2001, 15, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, S.F.; Mat Zaid, H.M.; Abdullah, J.; Zawawi, M.R.; Lim, N.H.; Sulaiman, Y.; Abdul Rahman, N. Synthesis and characterization of polyaniline/graphene composite nanofiber and its application as an electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis. Sensors 2017, 17, 2789. [Google Scholar] [CrossRef] [PubMed]
- Pereira Arias-Bouda, L.M.; Nguyen, L.N.; Ho, L.Y.M.; Kuijper, S.; Jansen, H.M.; Kolk, A.H.J. Development of antigen detection assay for diagnosis of tuberculosis using sputum samples. J. Clin. Microbiol. 2000, 38, 2278–2283. [Google Scholar] [PubMed]
- Yáñez, M.A.; Coppola, M.P.; Russo, D.A.; Delaha, E.; Chaparas, S.D.; Yeager, H., Jr. Determination of mycobacterial antigens in sputum by enzyme immunoassay. J. Clin. Microbiol. 1986, 23, 822–825. [Google Scholar] [PubMed]
- Sada, E.; Ruiz-Palacios, G.M.; López-Vidal, Y.; Ponce de León, S. Detection of mycobacterial antigens in cerebrospinal fluid of patients with tuberculosis meningitis by enzyme-linked immunosorbent assay. Lancet 1983, 322, 651–652. [Google Scholar] [CrossRef]
- Choudhry, V.; Saxena, R.K. Detection of Mycobacterium tuberculosis antigens in urinary proteins of tuberculosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Reither, K.; Saathoff, E.; Jung, J.; Minja, L.T.; Kroidl, I.; Saad, E.; Huggett, J.F.; Ntinginya, E.N.; Maganga, L.; Maboko, L.; et al. Low sensitivity of a urine LAM-ELISA in the diagnosis of pulmonary tuberculosis. BMC Infect. Dis. 2009, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.C.; Park, Y.H.; Ahn, J.; Waters, W.R.; Palmer, M.V.; Hamilton, M.J.; Barrington, G.; Mosaad, A.A.; Park, K.T.; Jung, W.K.; et al. Use of rMPB70 protein and ESAT-6 peptide as antigens for comparison of the enzyme linked immunosorbent, immunochromatographic, and latex bead agglutination assays for serodiagnosis of bovine tuberculosis. J. Clin. Microbiol. 2005, 43, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.-R.; Hong, C.; Zhou, Y.-L.; Li, Y.; Gao, X.-M.; Zhang, X.-X. Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation. Talanta 2011, 85, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cai, Y.; Wang, T.; Shi, Y.; Jiang, G. Preparation of alkanethiolate-functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules. Anal. Chem. 2008, 80, 9091–9096. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Xiang, Z.; He, J.; Wang, G.; Li, H.; Qian, Z.; Yang, M. Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosens. Bioelectron. 2010, 26, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Rashid, J.I.A.; Yusof, N.A.; Abdullah, J.; Hashim, U.; Hajian, R. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. Mater. Sci. Eng. C 2014, 45, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Mat Zaid, M.H.; Abdullah, J.; Yusof, N.A.; Sulaiman, Y.; Wasoh, H.; Md Noh, M.F.; Issa, R. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens. Actuators B Chem. 2017, 241, 1024–1034. [Google Scholar] [CrossRef]
- Yan, C.; Kanaththage, Y.W.; Short, R.; Gibson, C.T.; Zou, L. Graphene/Polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 2014, 344, 274–279. [Google Scholar] [CrossRef]
- Wan, H.; Sun, Q.; Li, H.; Sun, F.; Hu, N.; Wang, P. Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sens. Actuators B Chem. 2015, 209, 336–342. [Google Scholar] [CrossRef]
- Duangkaew, P.; Tapaneeyakorn, S.; Apiwat, C.; Dharakul, T. Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16 INK4a cervical cancer detection in clinical samples. Biosens. Bioelectron. 2015, 74, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Bizid, S.; Blili, S.; Mlika, R.; Haj Said, A.; Korri-Youssoufi, H. Direct E-DNA sensor of Mycobacterium tuberculosis mutant strain based on new nanocomposite transducer (Fc-ac-OMPA/MWCNTs). Talanta 2018, 184, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Nuzaihan, M.N.M.; Hashim, U.; Md Arshad, M.K.; Kasjoo, S.R.; Rahman, S.F.A.; Ruslinda, A.R.; Fathil, M.F.M.; Adzhri, R.; Shahimin, M.M. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Biosens. Bioelectron. 2016, 83, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.F.A.; Yusof, N.A.; Hashim, U.; Hushiarian, R.; Nuzaihan, M.N.M.; Hamidon, M.N.; Zawawi, R.M.; Fathil, M.F.M. Enhanced sensing of dengue virus DNA detection using O2 plasma treated-silicon nanowire based electrical biosensor. Anal. Chim. Acta 2016, 942, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Liu, Z.; Xiu, B.; Yang, X.; Zhao, P.; Zhang, X.; Duan, C.; Que, H.; Zhang, H.; Feng, X. A multiple-antigen detection assay for tuberculosis diagnosis based on broadly reactive polyclonal antibodies. Iran. J. Basic Med. Sci. 2017, 20, 360–367. [Google Scholar] [PubMed]
- Metcalfe, J.Z.; Cattamanchi, A.; McCulloch, C.E.; Lew, J.D.; Ha, N.P.; Graviss, E.A. Test variability of the QuantiFERON-TB gold in-tube assay in clinical practice. Am. J. Respir. Crit. Care Med. 2013, 187, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Mohd Bakhori, N.; Yusof, A.N.; Abdullah, J.; Wasoh, H.; Md Noor, S.S.; Ahmad Raston, H.N.; Mohammad, F. Immuno nanosensor for the ultrasensitive naked eye detection of tuberculosis. Sensors 2018, 18, 1932. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, K.S.; Kim, E.B.; Paik, S.; Chang, C.L.; Park, T.J.; Kim, H.-J.; Lee, J. Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens. Bioelectron. 2017, 96, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.C.; Chen, H.; Lee, J.; Park, H.-K.; Kim, Y.S.; Shin, H.-C.; Kim, C.-M.; Park, T.J.; Lee, S.J.; Koh, K.; et al. Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy. Sens. Actuators B Chem. 2011, 156, 271–275. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Detection Method | Linear Range | LOD | References |
---|---|---|---|---|
1. | Enzyme-linked immunosorbent assay (ELISA) | Not reported | 0.35 IU/mL | [37] |
2. | Plasmonic ELISA | 0–0.1 µg/mL | 0.01 µg/mL | [38] |
3. | Magnetophoretic immunoassay | 1 pM–1 mM | 0.3 pM | [39] |
4. | Surface plasmon resonance (SPR) | 0.1 to 1 μg/mL | 100 ng/mL | [40] |
5. | Electrochemical | 20–100 ng/mL | 15 ng/mL | This work |
Replicate | Peak Current (µA) | Mean, µ | Standard Deviation, σ | Relative Standard Deviation, RSD (%) |
---|---|---|---|---|
1 | 6.09 | 6.13 | 0.034 | 0.55 |
2 | 6.16 | |||
3 | 6.16 | |||
4 | 6.14 | |||
5 | 6.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Azmi, U.Z.; Yusof, N.A.; Kusnin, N.; Abdullah, J.; Suraiya, S.; Ong, P.S.; Ahmad Raston, N.H.; Abd Rahman, S.F.; Mohamad Fathil, M.F. Sandwich Electrochemical Immunosensor for Early Detection of Tuberculosis Based on Graphene/Polyaniline-Modified Screen-Printed Gold Electrode. Sensors 2018, 18, 3926. https://doi.org/10.3390/s18113926
Mohd Azmi UZ, Yusof NA, Kusnin N, Abdullah J, Suraiya S, Ong PS, Ahmad Raston NH, Abd Rahman SF, Mohamad Fathil MF. Sandwich Electrochemical Immunosensor for Early Detection of Tuberculosis Based on Graphene/Polyaniline-Modified Screen-Printed Gold Electrode. Sensors. 2018; 18(11):3926. https://doi.org/10.3390/s18113926
Chicago/Turabian StyleMohd Azmi, Umi Zulaikha, Nor Azah Yusof, Norzila Kusnin, Jaafar Abdullah, Siti Suraiya, Poh Shing Ong, Nurul Hanun Ahmad Raston, Siti Fatimah Abd Rahman, and Mohamad Faris Mohamad Fathil. 2018. "Sandwich Electrochemical Immunosensor for Early Detection of Tuberculosis Based on Graphene/Polyaniline-Modified Screen-Printed Gold Electrode" Sensors 18, no. 11: 3926. https://doi.org/10.3390/s18113926
APA StyleMohd Azmi, U. Z., Yusof, N. A., Kusnin, N., Abdullah, J., Suraiya, S., Ong, P. S., Ahmad Raston, N. H., Abd Rahman, S. F., & Mohamad Fathil, M. F. (2018). Sandwich Electrochemical Immunosensor for Early Detection of Tuberculosis Based on Graphene/Polyaniline-Modified Screen-Printed Gold Electrode. Sensors, 18(11), 3926. https://doi.org/10.3390/s18113926