Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns
Abstract
:1. Introduction
1.1. The Phase Retrieval Problem
1.2. Phase Retrieval: Applications, Algorithms and Recent Trends
1.2.1. Phase Front Modulation
1.2.2. Sparsity Meets Phase Retrieval
1.3. Proposed Algorithm and Contribution
- A variational reformulation of the PR problem that incorporates a dictionary-based sparse regression in the complex domain
- An algorithm that jointly retrieves phase and learns the dictionary yielding sparse representations (codes) for the complex domain patches of the object wavefront
- An extension of the algorithm to a class-specific scenario, where the dictionary is learned from clean images of the same class
2. Problem Formulation
2.1. Sparse Regression Based Wavefront Modeling
2.2. Noisy Observation Modeling
2.2.1. Poissonian Observation Model
2.2.2. Gaussian Observation Model
3. Dictionary Learning Phase Retrieval (DLPR) Algorithm
3.1. DLPR for Poissonian Observation Model
3.1.1. Problem 1: Optimization with Respect to
3.1.2. Problem 2: Optimization with Respect to
3.1.3. Problem 3: Optimization with Respect to
Algorithm 1: Orthogonal Matching Pursuit (OMP). |
3.1.4. Problem 4: Optimization with Respect to
Algorithm 2: Complex Domain Online Dictionary Learning (C-ODL). |
3.2. DLPR for the Gaussian Observation Model
Algorithm 3: Dictionary Learning Phase Retrieval (DLPR). |
4. Experiments and Results
- Group 1: Invariant amplitude, i.e., .
- Group 2: Independent amplitude, i.e., amplitude and phase are two unrelated images.
- Group 3: Amplitude and phase are highly similar. .
- Group 4: Amplitude and phase are less similar. .
4.1. Poissonian Observations
4.1.1. Experiments Using Synthetic Dataset
4.1.2. Phase Unwrapping
4.1.3. Experiments Using Real MRI Interferograms
4.2. Gaussian Observation
4.3. Prior-Plugged DLPR for Class-Specific Phase Retrieval
Algorithm 4: Prior-plugged DLPR for class-specific PR. |
4.4. Complexity of DLPR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Candes, E.; Eldar, Y.; Strohmer, T.; Voroninski, V. Phase Retrieval via Matrix Completion. SIAM J. Imaging Sci. 2013, 6, 199–225. [Google Scholar] [CrossRef] [Green Version]
- Katkovnik, V. Phase retrieval from noisy data based on sparse approximation of object phase and amplitude. arXiv, 2017; arXiv:1709.01071. [Google Scholar]
- Candès, E.; Li, X.; Soltanolkotabi, M. Phase Retrieval via Wirtinger Flow: Theory and Algorithms. IEEE Trans. Inf. Theory 2015, 61, 1985–2007. [Google Scholar] [CrossRef] [Green Version]
- Saleh, B.; Teich, M. Fundamentals of Photonics, 2nd ed.; Wiley Series in Pure And Applied Optics; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Goodman, J. Introduction to Fourier Optics, 3rd ed.; Roberts & Co. Publishers: Englewood, CO, USA, 2005; Volume 1. [Google Scholar]
- Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 1952, 5, 843. [Google Scholar] [CrossRef]
- Millane, R. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 1990, 7, 394–411. [Google Scholar] [CrossRef]
- Harrison, R. Phase problem in crystallography. J. Opt. Soc. Am. A 1993, 10, 1046–1055. [Google Scholar] [CrossRef]
- Bonse, U.; Hart, M. An X-Ray interferometer. Appl. Phys. Lett. 1965, 6, 155–156. [Google Scholar] [CrossRef]
- Petrakov, A. X-ray phase-contrast method and its application to the study of blood vessels with a model object. Tech. Phys. 2003, 48, 607–611. [Google Scholar] [CrossRef]
- Snigirev, A.; Snigireva, I.; Kohn, V.; Kuznetsov, S.; Schelokov, I. On the possibilities of X-ray phase contrast microimaging by coherent high energy synchrotron radiation. Rev. Sci. Instrum. 1995, 66, 5486–5492. [Google Scholar] [CrossRef]
- Wilkins, S.; Gureyev, T.; Gao, D.; Pogany, A.; Stevenson, A. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 335–338. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Ishikawa, T.; Shen, Q.; Earnest, T. Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 2008, 59, 387–410. [Google Scholar] [CrossRef] [PubMed]
- Walther, A. The Question of Phase Retrieval in Optics. Opt. Acta Int. J. Opt. 1963, 10, 41–49. [Google Scholar] [CrossRef]
- Rabiner, L.; Juang, B. Fundamentals of Speech Recognition; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Balan, R.; Casazza, P.; Edidin, D. On signal reconstruction without phase. Appl. Comput. Harmonic Anal. 2006, 20, 345–356. [Google Scholar] [CrossRef]
- Dainty, J.; Fienup, J. Phase retrieval and image reconstruction for astronomy. In Image Recovery: Theory and Application; Academic Press: Orlando, FL, USA, 1987; pp. 231–275. [Google Scholar]
- Chai, A.; Moscoso, M.; Papanicolaou, G. Array imaging using intensity-only measurements. Inverse Probl. 2011, 27, 015005. [Google Scholar] [CrossRef]
- Demanet, L.; Jugnon, V. Convex Recovery From Interferometric Measurements. IEEE Trans. Comput. Imaging 2017, 3, 282–295. [Google Scholar] [CrossRef]
- Stefik, M. Inferring DNA structures from segmentation data. Artif. Intell. 1978, 11, 85–114. [Google Scholar] [CrossRef]
- Bunk, O.; Diaz, A.; Pfeiffer, F.; David, C.; Schmitt, B.; Satapathy, D.; Veen, J. Diffractive imaging for periodic samples: Retrieving one-dimensional concentration profiles across microfluidic channels. Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 63, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Baykal, B. Blind channel estimation via combining autocorrelation and blind phase estimation. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 1125–1131. [Google Scholar] [CrossRef]
- Corbett, J. The pauli problem, state reconstruction and quantum-real numbers. Rep. Math. Phys. 2006, 57, 53–68. [Google Scholar] [CrossRef]
- Reichenbach, H. Philosophic Foundations of Quantum Mechanics; University of California Press: Berkeley, CA, USA, 1965. [Google Scholar]
- Heinosaari, T.; Luca, M.; Wolf, M. Quantum Tomography under Prior Information. Commun. Math. Phys. 2013, 318, 355–374. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Recht, B.; Romberg, J. Blind Deconvolution Using Convex Programming. IEEE Trans. Inf. Theory 2014, 60, 1711–1732. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, J.; Chebira, A.; Lu, Y.; Vetterli, M. Phase Retrieval for Sparse Signals: Uniqueness Conditions. arXiv, 2013; arXiv:1308.3058. [Google Scholar]
- Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Segala, F.; Volcic, A. The solution of the covariogram problem for plane convex bodies. J. Differ. Geom. 2002, 60, 177–198. [Google Scholar] [CrossRef]
- Gerchberg, R.; Saxton, W. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. OPTIK 1972, 35, 237–246. [Google Scholar]
- Guo, C.; Liu, S.; Sheridan, J. Iterative phase retrieval algorithms I: Optimization. Appl. Opt. 2015, 54, 4698–4708. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Dong, B.; Gu, B.; Zhuang, J.; Ersoy, O. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: A comparison. Appl. Opt. 1994, 33, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Lane, R. Phase Retrieval Using Conjugate Gradient Minimization. J. Mod. Opt. 1991, 38, 1797–1813. [Google Scholar] [CrossRef]
- Chen, Y.; Candes, E. Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems. In Advances in Neural Information Processing Systems 28; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 739–747. [Google Scholar]
- Waldspurger, I.; Aspremont, A.; Mallat, S. Phase recovery, MaxCut and complex semidefinite programming. Math. Program. 2015, 149, 47–81. [Google Scholar] [CrossRef]
- Bahmani, S.; Romberg, J. A flexible convex relaxation for phase retrieval. Electron. J. Stat. 2017, 11, 5254–5281. [Google Scholar] [CrossRef]
- Kishore, J.; Eldar, Y.; Hassibi, B. Phase Retrieval: An Overview of Recent Developments. arXiv, 2015; arXiv:1510.07713. [Google Scholar]
- Nugent, K.; Peele, A.; Chapman, H.; Mancuso, A. Unique Phase Recovery for Nonperiodic Objects. Phys. Rev. Lett. 2003, 91, 203902. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I.; Jefimovs, K.; Bunk, O.; David, C.; Dierolf, M.; Gray, J.; Renker, D.; Pfeiffer, F. Coherent Diffractive Imaging Using Phase Front Modifications. Phys. Rev. Lett. 2008, 100, 155503. [Google Scholar] [CrossRef] [PubMed]
- Candes, E.; Li, X.; Soltanolkotabi, M. Phase retrieval from coded diffraction patterns. Appl. Comput. Harmonic Anal. 2015, 39, 277–299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Pedrini, G.; Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 2007, 75, 043805. [Google Scholar] [CrossRef]
- Elad, M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 1st ed.; Springer Publishing Company: New York, NY, USA, 2010. [Google Scholar]
- Jaganathan, K.; Oymak, S.; Hassibi, B. Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms. IEEE Trans. Signal Process. 2017, 65, 2402–2410. [Google Scholar] [CrossRef]
- Shechtman, Y.; Beck, A.; Eldar, Y. GESPAR: Efficient Phase Retrieval of Sparse Signals. IEEE Trans. Signal Process. 2014, 62, 928–938. [Google Scholar] [CrossRef] [Green Version]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising with block-matching and 3D filtering. Proc. SPIE 2006, 6064, 354–365. [Google Scholar]
- Afonso, T.; Almeida, M.; Figueiredo, M. Single-frame Image Denoising and Inpainting Using Gaussian Mixtures. In Proceedings of the International Conference on Pattern Recognition Applications and Methods, Lisbon, Portugal, 10–12 January 2015; Volume 2, pp. 283–288. [Google Scholar]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, Q.; Chen, Y.; Hu, Y.; Luo, L.; Toumoulin, C. Dictionary learning based sinogram inpainting for CT sparse reconstruction. Opt. Int. J. Light Electron Opt. 2014, 125, 2862–2867. [Google Scholar] [CrossRef] [Green Version]
- Deledalle, C.; Denis, L.; Tupin, F. NL-InSAR: Nonlocal Interferogram Estimation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1441–1452. [Google Scholar] [CrossRef]
- Hongxing, H.; Bioucas-Dias, J.; Katkovnik, V. Interferometric Phase Image Estimation via Sparse Coding in the Complex Domain. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2587–2602. [Google Scholar] [CrossRef] [Green Version]
- Joshin, K.; Bioucas-Dias, J. Patch-based Interferometric Phase Estimation via Mixture of Gaussian Density Modelling & Non-local Averaging in the Complex Domain. In Proceedings of the British Machine Vision Conference, London, UK, 4–7 September 2017. [Google Scholar]
- Katkovnik, V.; Egiazarian, K. Sparse phase imaging based on complex domain nonlocal BM3D techniques. Digit. Signal Process. 2017, 63, 72–85. [Google Scholar] [CrossRef]
- Katkovnik, V.; Ponomarenko, M.; Egiazarian, K. Complex-valued image denosing based on group-wise complex-domain sparsity. arXiv, 2017; arXiv:1711.00362. [Google Scholar]
- Katkovnik, V.; Ponomarenko, M.; Egiazarian, K. Sparse Approximations in Complex Domain Based on BM3D Modeling. Signal Process 2017, 141, 96–108. [Google Scholar] [CrossRef]
- Bianco, V.; Memmolo, P.; Leo, M.; Montrésor, S.; Distante, C.; Paturzo, M.; Picart, P.; Javidi, B.; Ferraro, P. Strategies for reducing speckle noise in digital holography. Light Sci. Appl. 2018, 7, 48. [Google Scholar] [CrossRef]
- Bianco, V.; Memmolo, P.; Paturzo, M.; Finizio, A.; Javidi, B.; Ferraro, P. Quasi noise-free digital holography. Light Sci. Appl. 2016, 5, e16142. [Google Scholar] [CrossRef] [PubMed]
- Bioucas-Dias, J.; Valadao, G. Phase Unwrapping via Graph Cuts. IEEE Trans. Image Process. 2007, 16, 698–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillmann, A.; Eldar, Y.; Mairal, J. DOLPHIn-Dictionary Learning for Phase Retrieval. IEEE Trans. Signal Process. 2016, 64, 6485–6500. [Google Scholar] [CrossRef] [Green Version]
- Katkovnik, V.; Egiazarian, K.; Bioucas-Dias, J. Phase imaging via sparse coding in the complex domain based on high-order SVD and nonlocal BM3D techniques. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4587–4591. [Google Scholar]
- Soulez, F.; Thiébaut, E.; Schutz, A.; Ferrari, A.; Courbin, F.; Unser, M. Proximity operators for phase retrieval. Appl. Opt. 2016, 55, 7412–7421. [Google Scholar] [CrossRef] [PubMed]
- Raginsky, M.; Willett, R.; Harmany, Z.; Marcia, R. Compressed Sensing Performance Bounds Under Poisson Noise. IEEE Trans. Signal Process. 2010, 58, 3990–4002. [Google Scholar] [CrossRef] [Green Version]
- Salmon, J.; Harmany, Z.; Deledalle, C.; Willett, R. Poisson Noise Reduction with Non-local PCA. J. Math. Imaging Vis. 2014, 48, 279–294. [Google Scholar] [CrossRef]
- Harmany, Z.; Marcia, R.; Willett, R. Sparsity-regularized photon-limited imaging. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, The Netherlands, 14–17 April 2010; pp. 772–775. [Google Scholar]
- Adali, T.; Schreier, P.; Scharf, L. Complex-Valued Signal Processing: The Proper Way to Deal with Impropriety. IEEE Trans. Signal Process. 2011, 59, 5101–5125. [Google Scholar] [CrossRef]
- Rakotomamonjy, A. Applying alternating direction method of multipliers for constrained dictionary learning. Neurocomputing 2013, 106, 126–136. [Google Scholar] [CrossRef]
- Combettes, P.; Pesquet, J. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering; Springer: Berlin, Germany, 2011; pp. 185–212. [Google Scholar]
- Katkovnik, V.; Bioucas-Dias, J. Wavefront reconstruction in phase-shifting interferometry via sparse coding of amplitude and absolute phase. J. Opt. Soc. Am. A 2014, 31, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, B. Sparse Approximate Solutions to Linear Systems. SIAM J. Comput. 1995, 24, 227–234. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1994, 58, 267–288. [Google Scholar]
- Chen, S.; Donoho, D.; Saunders, M. Atomic Decomposition by Basis Pursuit. SIAM J. Sci. Comput. 1998, 20, 33–61. [Google Scholar] [CrossRef] [Green Version]
- Pati, Y.; Rezaiifar, R.; Krishnaprasad, P. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–3 November 1993; Volume 1, pp. 40–44. [Google Scholar]
- Foucart, S. Hard Thresholding Pursuit: An Algorithm for Compressive Sensing. SIAM J. Numer. Anal. 2011, 49, 2543–2563. [Google Scholar] [CrossRef] [Green Version]
- Vila, J.; Schniter, P. Expectation-maximization Bernoulli-Gaussian approximate message passing. In Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 6–9 November 2011; pp. 799–803. [Google Scholar]
- Blumensath, T.; Davies, M. Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 2009, 27, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online Dictionary Learning for Sparse Coding. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML ’09), Montreal, QC, Canada, 14–18 June 2009; ACM: New York, NY, USA, 2009; pp. 689–696. [Google Scholar]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2272–2279. [Google Scholar]
- Mairal, J.; Elad, M.; Sapiro, G. Sparse Representation for Color Image Restoration. IEEE Trans. Image Process. 2008, 17, 53–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499. [Google Scholar] [Green Version]
- Katkovnik, V.; Astola, J. Phase retrieval via spatial light modulator phase modulation in 4f optical setup: Numerical inverse imaging with sparse regularization for phase and amplitude. J. Opt. Soc. Am. A 2012, 29, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Bano, W.; Golbabaee, M.; Benjamin, A.; Marshall, I.; Davies, M. Improved Accuracy of Accelerated 3D T2* Mapping through Coherent Parallel Maximum Likelihood Estimation. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB, Paris, France, 16–21 June 2018. [Google Scholar]
Sig No. | Amplitude a | Phase | Group |
---|---|---|---|
1 | constant | Trun. Gaussian | 1 |
2 | constant | Shear Plane | |
3 | Mountain | Shear Plane | 2 |
4 | Quadratic | Trun. Gaussian | |
5 | Gaussian | Shear Plane | |
6 | Highly similar | Trun. Gaussian | 3 |
7 | Highly similar | Shear Plane | |
8 | Less similar | Trun. Gaussian | 4 |
9 | Less similar | Shear Plane |
RMSE | |||||
---|---|---|---|---|---|
Surf. | GS-F | TWF | SPAR | DLPR | Prior-Plugged DLPR |
Side view | 0.587 | 1.560 | 0.330 | 0.202 | 0.184 |
Top view | 0.707 | 1.789 | 0.366 | 0.220 | 0.194 |
Front view | 0.698 | 1.693 | 0.393 | 0.226 | 0.192 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, J.P.; Bioucas-Dias, J.M.; Katkovnik, V. Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns. Sensors 2018, 18, 4006. https://doi.org/10.3390/s18114006
Krishnan JP, Bioucas-Dias JM, Katkovnik V. Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns. Sensors. 2018; 18(11):4006. https://doi.org/10.3390/s18114006
Chicago/Turabian StyleKrishnan, Joshin P., José M. Bioucas-Dias, and Vladimir Katkovnik. 2018. "Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns" Sensors 18, no. 11: 4006. https://doi.org/10.3390/s18114006
APA StyleKrishnan, J. P., Bioucas-Dias, J. M., & Katkovnik, V. (2018). Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns. Sensors, 18(11), 4006. https://doi.org/10.3390/s18114006