Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. American J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Leppanen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Ayramo, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; Parkkari, J. Stiff Landings Are Associated With Increased ACL Injury Risk in Young Female Basketball and Floorball Players. American J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. American J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Dai, B.; Huffman, N.; Garrett, W.E.; Queen, R.M. Lower Extremity Movement Differences Persist After Anterior Cruciate Ligament Reconstruction and When Returning to Sports. Clin. J. Sport Med. 2016, 26, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Butler, R.J.; Garrett, W.E.; Queen, R.M. Anterior cruciate ligament reconstruction in adolescent patients: limb asymmetry and functional knee bracing. American J. Sports Med. 2012, 40, 2756–2763. [Google Scholar] [CrossRef] [PubMed]
- Renner, K.E.; Franck, C.T.; Miller, T.K.; Queen, R.M. Limb asymmetry during recovery from anterior cruciate ligament reconstruction. J. Orthop. Res. 2018, 36, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Orishimo, K.F.; Kremenic, I.J.; Mullaney, M.J.; McHugh, M.P.; Nicholas, S.J. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Queen, R.M.; Abbey, A.N.; Chuckpaiwong, B.; Nunley, J.A. Plantar loading comparisons between women with a history of second metatarsal stress fractures and normal controls. American J. Sports Med. 2009, 37, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Orendurff, M.S.; Rohr, E.S.; Segal, A.D.; Medley, J.W.; Green, J.R., 3rd; Kadel, N.J. Regional foot pressure during running, cutting, jumping, and landing. American J. Sports Med. 2008, 36, 566–571. [Google Scholar] [CrossRef] [PubMed]
- De Leon Rodriguez, D.; Allet, L.; Golay, A.; Philippe, J.; Assal, J.P.; Hauert, C.A.; Pataky, Z. Biofeedback can reduce foot pressure to a safe level and without causing new at-risk zones in patients with diabetes and peripheral neuropathy. Diabetes Metab. Res. Rev. 2013, 29, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Low, D.C.; Dixon, S.J. Footscan pressure insoles: Accuracy and reliability of force and pressure measurements in running. Gait Posture 2010, 32, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Seiberl, W.; Jensen, E.; Merker, J.; Leitel, M.; Schwirtz, A. Accuracy and precision of loadsol((R)) insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters. Eur. J. Sport Sci. 2018, 18, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Godi, M.; Turcato, A.M.; Schieppati, M.; Nardone, A. Test-retest reliability of an insole plantar pressure system to assess gait along linear and curved trajectories. J. Neuroeng. Rehabil. 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Price, C.; Parker, D.; Nester, C. Validity and repeatability of three in-shoe pressure measurement systems. Gait Posture 2016, 46, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, B.; Butler, R.J.; Garrett, W.E.; Queen, R.M. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction. Scand. J. Med. Sci. Sports 2014, 24, 974–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, R.J.; Dai, B.; Garrett, W.E.; Queen, R.M. Changes in landing mechanics in patients following anterior cruciate ligament reconstruction when wearing an extension constraint knee brace. Sports Heal. 2014, 6, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Burns, G.T.; Zendler, J.D.; Zernicke, R.F. Wireless Insoles to Measure Ground Reaction Forces: Step-Bystep Validity in Hopping, Walking, and Running. ISBS Proc. Arch. 2017, 35, 255. Available online: https://commons.nmu.edu/isbs/vol35/iss1/255 (accessed on 20 November 2018).
- Mengarelli, A.; Verdini, F.; Cardarelli, S.; Di Nardo, F.; Burattini, L.; Fioretti, S. Balance assessment during squatting exercise: A comparison between laboratory grade force plate and a commercial, low-cost device. J. Biomech. 2018, 71, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Huurnink, A.; Fransz, D.P.; Kingma, I.; van Dieën, J.H. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J. Biomech. 2013, 46, 1392–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, K.A.; Sigward, S.M. Inertial Sensor Angular Velocities Reflect Dynamic Knee Loading during Single Limb Loading in Individuals Following Anterior Cruciate Ligament Reconstruction. Sensors 2018, 18, 3460. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Netto, K.; Aisbett, B.; Gastin, P. Validation of accelerometer data for measuring impacts during jumping and landing tasks. In Proceedings of the 28th International Conference on Biomechanics in Sports, Marquette, MI, USA, 19–23 July 2010. [Google Scholar]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of performance measurements derived from ground reaction force data. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.; Fiolkowski, P.; Conrad, B.; Brunt, D.; Horodyski, M. Athletic Footwear, Leg Stiffness, and Running Kinematics. J. Athl. Train. 2006, 41, 387–392. [Google Scholar] [PubMed]
- Mok, K.M.; Petushek, E.; Krosshaug, T. Reliability of knee biomechanics during a vertical drop jump in elite female athletes. Gait Posture 2016, 46, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, C.E.; Westlake, C.G.; Tate, J.J. Test-retest reliability of knee biomechanics during stop jump landings. J. Biomech. 2011, 44, 1814–1816. [Google Scholar] [CrossRef] [PubMed]
Stop Jump Validity | Single Hop Validity | |||||||
FP | LS | ICC (95% CI) | Bias (95% LoA) | FP | LS | ICC (95% CI) | Bias (95% LoA) | |
IMP (BW) | 0.42 (0.08) | 0.42 (0.08) | 0.982 (0.96, 0.99) | 0.00 (−0.04, 0.04) | 0.38 (0.04) | 0.40 (0.05) | 0.860 (0.71, 0.93) | −0.02 * (−0.08, 0.04) |
IP (BW) | 1.93 (0.42) | 1.55 (0.37) | 0.941 (0.88, 0.97) | 0.37 * (0.01, 0.74) | 3.05 (0.37) | 3.51 (0.60) | 0.707 (0.38, 0.86) | −0.46 * (−1.38, 0.46) |
LR (BW) | 69.8 (33.2) | 34.8 (11.3) | 0.685 (0.34, 0.85) | 35.0 * (−12.6, 82.6) | 73.9 (20.6) | 80.1 (14.2) | 0.773 (0.51, 0.90) | −11.8 (−31.4, 7.93) |
IMP LSI (%) | 99.1 (13.2) | 100.6 (16.0) | 0.967 (0.93, 0.98) | −1.56 (−11.9, 8.8) | 98.9 (5.0) | 97.0 (9.2) | 0.366 (−0.33, 0.70) | 1.93 (−16.2, 20.0) |
IP LSI (%) | 97.5 (22.3) | 98.3 (25.5) | 0.965 (0.93, 0.98) | 0.73 (−18.0, 16.5) | 99.3 (9.5) | 96.0 (15.3) | 0.754 (0.48, 0.88) | 3.31 (−18.9, 25.5) |
LR LSI (%) | 95.6 (26.7) | 97.5 (23.8) | 0.897 (0.78, 0.95) | −1.90 (−32.2, 28.4) | 104.2 (20.0) | 99.6 (21.1) | 0.838 (0.66, 0.92) | 2.22 (−23.9, 28.3) |
Stop Jump Repeatability | Single Hop Repeatability | |||||||
Day1 | Day2 | ICC (95% CI) | Bias (95% LoA) | Day1 | Day2 | ICC (95% CI) | Bias (95% LoA) | |
IMP (BW) | 0.43 (0.08) | 0.43 (0.08) | 0.928 (0.79, 0.98) | 0.01 (−0.08, 0.09) | 0.43 (0.05) | 0.43 (0.07) | 0.901 (0.71, 0.97) | 0.00 (−0.07, 0.07) |
IP (BW) | 1.48 (0.36) | 1.43 (0.27) | 0.698 (0.10, 0.90) | −0.05 (−0.64, 0.55) | 3.68 (0.62) | 3.62 (0.85) | 0.876 (0.63, 0.96) | −0.06 (−1.04, 0.91) |
LR (BW) | 32.4 (10.2) | 32.2 (13.1) | 0.721 (0.17, 0.91) | −0.14 (−21.7, 21.4) | 81.5 (16.7) | 79.3 (23.9) | 0.863 (0.59, 0.95) | −2.18 (30.2, 25.8) |
IMP LSI (%) | 102.0 (17.2) | 101.4 (10.0) | 0.616 (−0.15, 0.87) | −0.55 (−29.5, 28.5) | 98.2 (11.5) | 101.7 (12.0) | 0.880 (0.64, 0.96) | 3.42 (−11.6, 18.5) |
IP LSI (%) | 104.5 (19.4) | 109.1 (13.9) | 0.297 (−1.09, 0.76) | 4.59 (−37.8, 47.0) | 97.1 (14.3) | 105.0 (15.6) | 0.704 (0.12, 0.90) | 7.98 (−20.0, 36.0) |
LR LSI (%) | 104.0 (24.0) | 108.7 (17.5) | 0.004 (−1.99, 0.66) | 4.72 (−53.5, 63.0) | 97.9 (19.0) | 118.4 (37.3) | 0.659 (0.02, 0.89) | 20.55 (−38.0, 79.0) |
Stop Jump Validity | Single Hop Validity | |||||||
---|---|---|---|---|---|---|---|---|
FP | LS | ICC (95% CI) | Bias (95% LoA) | FP | LS | ICC (95% CI) | Bias (95% LoA) | |
IMP (BW) | 0.45 (0.07) | 0.41 (0.07) | 0.987 (0.96, 0.99) | 0.04 * (0.01, 0.08) | 0.39 (0.02) | 0.36 (0.02) | 0.872 (0.60, 0.96) | 0.03 * (0.00, 0.05) |
IP (BW) | 1.98 (0.53) | 1.62 (0.38) | 0.964 (0.89, 0.99) | 0.37 * (0.03, 0.70) | 3.57 (0.41) | 3.22 (0.37) | 0.949 (0.84, 0.98) | 0.35 * (0.02, 0.69) |
LR (BW) | 80.7 (36.4) | 52.2 (16.4) | 0.821 (0.44, 0.94) | 28.5 * (−14.6, 71.5) | 119.2 (26.9) | 98.1 (20.2) | 0.912 (0.73, 0.97) | 21.1 * (−5.4, 47.7) |
IMP LSI (%) | 94.4 (13.7) | 97.4 (14.9) | 0.970 (0.91, 0.99) | −3.07 * (−12.6, 6.5) | 101.9 (4.7) | 103.7 (7.0) | 0.765 (0.27, 0.93) | −1.77 (−11.9, 8.4) |
IP LSI (%) | 101.1 (23.0) | 102.4 (21.7) | 0.967 (0.90, 0.99) | −1.28 (−17.1, 14.5) | 104.9 (13.8) | 102.1 (11.2) | 0.917 (0.74, 0.97) | 2.79 (−10.8, 16.4) |
LR LSI (%) | 108.1 (33.2) | 107.0 (30.4) | 0.966 (0.90, 0.99) | 1.09 (−21.4, 23.6) | 110.7 (23.3) | 104.1 (18.6) | 0.756 (0.20, 0.93) | 6.61 (−30.0, 43.2) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peebles, A.T.; Maguire, L.A.; Renner, K.E.; Queen, R.M. Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing. Sensors 2018, 18, 4082. https://doi.org/10.3390/s18124082
Peebles AT, Maguire LA, Renner KE, Queen RM. Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing. Sensors. 2018; 18(12):4082. https://doi.org/10.3390/s18124082
Chicago/Turabian StylePeebles, Alexander T., Lindsay A. Maguire, Kristen E. Renner, and Robin M. Queen. 2018. "Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing" Sensors 18, no. 12: 4082. https://doi.org/10.3390/s18124082
APA StylePeebles, A. T., Maguire, L. A., Renner, K. E., & Queen, R. M. (2018). Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing. Sensors, 18(12), 4082. https://doi.org/10.3390/s18124082