Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures
Abstract
:1. Introduction
2. Model, Prototype, and Experiment
3. Characterization of Metamaterial
4. Metamaterial as Sensor
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sabah, C.; Nesimoglu, T. Design and characterization of a resonator-based metamaterial and its sensor application using microstrip technology. Opt. Eng. 2016, 55, 027107. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, M.T.; Samsuzzaman, M.; Faruque, M.R.I.; Misran, N.; Mansor, M.F. A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials 2015, 8, 392–407. [Google Scholar] [CrossRef] [PubMed]
- Sabah, C.; Roskos, H. Terahertz sensing application by using planar split-ring-resonator structures. Microsyst. Technol. 2012, 18, 2071–2076. [Google Scholar] [CrossRef]
- Sabah, C.; Roskos, H.G. Broadside-coupled triangular split-ring-resonators for terahertz sensing. Eur. Phys. J. Appl. Phys. 2013, 61, 30402. [Google Scholar] [CrossRef]
- Schueler, M.; Mandel, C.; Puentes, M.; Jakoby, R. Metamaterial inspired microwave sensors. IEEE Microw. Mag. 2012, 13, 57–68. [Google Scholar] [CrossRef]
- Boybay, M.S.; Ramahi, O.M. Material characterization using complementary split-ring resonators. IEEE Trans. Instrum. Meas. 2012, 61, 3039–3046. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef]
- Sabah, C.; Taygur, M.M.; Zoral, E.Y. Investigation of microwave metamaterial based on H-shaped resonator in a waveguide configuration and its sensor and absorber applications. J. Electromagn. Waves Appl. 2015, 29, 819–831. [Google Scholar] [CrossRef]
- Huang, M.; Yang, J.; Jun, S.; Mu, S.; Lan, Y. Simulation and analysis of a metamaterial sensor based on a microring resonator. Sensors 2011, 11, 5886–5899. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Huang, M.; Yang, J.-J.; Li, T.-H.; Lan, Y.-Z. A microring resonator based negative permeability metamaterial sensor. Sensors 2011, 11, 8060–8071. [Google Scholar] [CrossRef] [PubMed]
- Ozbey, B.; Demir, H.V.; Kurc, O.; Erturk, V.B.; Altintas, A. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor. Sensors 2014, 14, 19609–19621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqui, J.; Coromina, J.; Karami-Horestani, A.; Fumeaux, C.; Martín, F. Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonators (S-SRR). Sensors 2015, 15, 9628–9650. [Google Scholar] [CrossRef] [PubMed]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuators A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-S.; Yang, C.-L. Thickness and permittivity measurement in multi-layered dielectric structures using complementary split-ring resonators. IEEE Sens. J. 2014, 14, 695–700. [Google Scholar] [CrossRef]
- Boybay, M.S.; Ramahi, O.M. Non-destructive thickness measurement using quasi-static resonators. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 217–219. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Daneshmand, M. Monitoring Solid Particle Deposition in Lossy Medium Using Planar Resonator Sensor. IEEE Sens. J. 2017, 17, 7981–7989. [Google Scholar] [CrossRef]
- Soffiatti, A.; Max, Y.; Silva, S.G.; de Mendonça, L.M. Microwave Metamaterial-Based Sensor for Dielectric Characterization of Liquids. Sensors 2018, 18, 1513. [Google Scholar] [CrossRef] [PubMed]
- Zarifi, M.H.; Gholidoust, A.; Abdolrazzaghi, M.; Shariaty, P.; Hashisho, Z.; Daneshmand, M. Sensitivity enhancement in planar microwave active-resonator using metal organic framework for CO2 detection. Sens. Actuators B Chem. 2018, 255, 1561–1568. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Differential Sensors Using Microstrip Lines Loaded with Two Split Ring Resonators. IEEE Sens. J. 2018, 18, 5786–5793. [Google Scholar] [CrossRef]
- Bahoumina, P.; Hallil-Abbas, H.; Lachaud, J.-L.; Rebiere, D.; Dejous, C.; Abdelghani, A.; Frigui, K.; Bila, S.; Baillargeat, D.; Zhang, Q. VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT: PSS-MWCNTs nanocomposite film for environmental applications. IEEE Trans. Nanotechnol. 2018. [Google Scholar] [CrossRef]
- Karuppuswami, S.; Matta, L.L.; Alocilja, E.C.; Chahal, P. A Wireless RFID Compatible Sensor Tag Using Gold Nanoparticle Markers for Pathogen Detection in the Liquid Food Supply Chain. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Bogner, A.; Steiner, C.; Walter, S.; Kita, J.; Hagen, G.; Moos, R. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing. Sensors 2017, 17, 2422. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Memon, M.U.; Lim, S. Simultaneous Detection of Two Chemicals Using a TE20-Mode Substrate-Integrated Waveguide Resonator. Sensors 2018, 18, 811. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Faruque, M.R.I.; Islam, S.S.; Islam, M.T. A new compact double-negative miniaturized metamaterial for wideband operation. Materials 2016, 9, 830. [Google Scholar] [CrossRef] [PubMed]
Reference | Sensor Size | Resonator | Operating Band | Sensing Base | Sensitivity |
---|---|---|---|---|---|
[1] | 35 mm × 35 mm | S-shaped | GHz | Frequency shift | Not reported |
[3] | 87.5 µm × 87.5 µm | SSRR | THz | Frequency shift | Not reported |
[4] | 75 µm × 75 µm | TSRR | THz | Frequency shift | Not reported |
[7] | Not reported | CSRR | GHz | Frequency shift | 400 MHz |
[19] | Not reported | SRR | GHz | Frequency shift | 72 MHz |
Proposed | 30 mm × 30 mm | 8-shaped | GHz | Frequency shift | Max 625 MHz |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.T.; Rahman, M.N.; Samsuzzaman, M.; Mansor, M.F.; Misran, N. Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures. Sensors 2018, 18, 4213. https://doi.org/10.3390/s18124213
Islam MT, Rahman MN, Samsuzzaman M, Mansor MF, Misran N. Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures. Sensors. 2018; 18(12):4213. https://doi.org/10.3390/s18124213
Chicago/Turabian StyleIslam, Mohammad Tariqul, Md. Naimur Rahman, Md. Samsuzzaman, Mohd Fais Mansor, and Norbahiah Misran. 2018. "Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures" Sensors 18, no. 12: 4213. https://doi.org/10.3390/s18124213
APA StyleIslam, M. T., Rahman, M. N., Samsuzzaman, M., Mansor, M. F., & Misran, N. (2018). Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures. Sensors, 18(12), 4213. https://doi.org/10.3390/s18124213