Workshop, Cost-Effective and Streamlined Fabrications of Re-Usable World-To-Chip Connectors for Handling Sample of Limited Volume and for Assembling Chip Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Lab-on-Chip Immobilization of GFP Protein
3.1.1. Design and Make of Chip Port
3.1.2. Design and Fabrication of Microfluidic Chip
3.1.3. Assembly of Port and Chip
3.1.4. On-Chip Immobilization of GFP Protein
3.2. Lab-Chip-For-Fish for Studying the Development of Fish Embryos
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef] [PubMed]
- Yeo, L.Y.; Chang, H.C.; Chan, P.P.; Friend, J.R. Microfluidic devices for bioapplications. Small 2011, 7, 12–48. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, X. Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 2017, 17, 3960–3978. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Nie, Z.; Cheng, C.M.; Carrilho, E.; Wiley, B.J.; Whitesides, G.M. Programmable diagnostic devices made from paper and tape. Lab Chip 2010, 10, 2499–2504. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Surapaneni, R.; Gale, B.K. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Lab Chip 2009, 9, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Estala, L.; Gaines, M.; Gomez, F.A. Mixed thread/paper-based microfluidic chips as a platform for glucose assays. Electrophoresis 2016, 37, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Kalish, B.; Tsutsui, H. Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits. Lab Chip 2014, 14, 4354–4361. [Google Scholar] [CrossRef] [PubMed]
- Yuen, P.K.; Goral, V.N. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Lab Chip 2010, 10, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Fung, D.; Kunde, Y.A.; Zeytun, A.; Branch, B.; Goddard, G. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 2010, 10, 2286–2291. [Google Scholar] [CrossRef]
- Gerber, L.C.; Kim, H.; Riedel-Kruse, I.H. Microfluidic assembly kit based on laser-cut building blocks for education and fast prototyping. Biomicrofluidics 2015, 9, 064105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howang, J.-S.; Kim, S.-Y.; Kim, Y.-S.; Song, H.-J.; Park, C.-Y.; Kim, J.-D. Implementation of PCB-Based PCR Chip Using Double-Sided Tape. Int. J. Control Autom. 2015, 8, 117–124. [Google Scholar] [CrossRef]
- Islam, M.; Natu, R.; Martinez-Duarte, R. A study on the limits and advantages of using a desktop cutter plotter to fabricate microfluidic networks. Microfluid. Nanofluid. 2015, 19, 973–985. [Google Scholar] [CrossRef]
- Yang, Z.; Maeda, R. A world-to-chip socket for microfluidic prototype development. Electrophoresis 2002, 23, 3474–3478. [Google Scholar] [CrossRef]
- Fredrickson, C.K.; Fan, Z.H. Macro-to-micro interfaces for microfluidic devices. Lab Chip 2004, 4, 526–533. [Google Scholar] [CrossRef]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Oh, K.W.; Park, C.; Namkoong, K.; Kim, J.; Ock, K.S.; Kim, S.; Kim, Y.A.; Cho, Y.K.; Ko, C. World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays. Lab Chip 2005, 5, 845–850. [Google Scholar] [CrossRef]
- Yuen, P.K. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects. Lab Chip 2016, 16, 3700–3707. [Google Scholar] [CrossRef]
- Chen, A.; Pan, T. Fit-to-Flow (F2F) interconnects: Universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems. Lab Chip 2011, 11, 727–732. [Google Scholar] [CrossRef]
- Scott, A.; Au, A.K.; Vinckenbosch, E.; Folch, A. A microfluidic D-subminiature connector. Lab Chip 2013, 13, 2036–2039. [Google Scholar] [CrossRef]
- Pfreundt, A.; Andersen, K.B.; Dimaki, M.; Svendsen, W.E. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices. J. Micromech. Microeng. 2015, 25. [Google Scholar] [CrossRef]
- Christensen, A.M.; Chang-Yen, D.A.; Gale, B.K. Characterization of interconnects used in PDMS microfluidic systems. J. Micromech. Microeng. 2005, 15, 928–934. [Google Scholar] [CrossRef]
- Tkachenko, E.; Gutierrez, E.; Ginsberg, M.H.; Groisman, A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip 2009, 9, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, E.; Neumann, C.; Duttenhofer, T.; Pires, L.; Rapp, B.E. Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. Lab Chip 2013, 13, 4343–4351. [Google Scholar] [CrossRef] [PubMed]
- Saarela, V.; Franssila, S.; Tuomikoski, S.; Marttila, S.; Ostman, P.; Sikanen, T.; Kotiaho, T.; Kostiainen, R. Re-usable multi-inlet PDMS fluidic connector. Sens. Actuators B Chem. 2006, 114, 552–557. [Google Scholar] [CrossRef]
- Sabourin, D.; Snakenborg, D.; Dufva, M. Interconnection blocks: A method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections. J. Micromech. Microeng. 2009, 19, 035021. [Google Scholar] [CrossRef]
- Cooksey, G.A.; Atencia, J. Pneumatic valves in folded 2D and 3D fluidic devices made from plastic films and tapes. Lab Chip 2014, 14, 1665–1668. [Google Scholar] [CrossRef]
- Cooksey, G.A.; Plant, A.L.; Atencia, J. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices. Lab Chip 2009, 9, 1298–1300. [Google Scholar] [CrossRef]
- Schott, H.; Royce, A.E. Improved microscopic techniques for droplet size determination of emulsions. J. Pharm. Sci. 1983, 72, 313–315. [Google Scholar] [CrossRef]
- Hu, W.P.; Huang, L.Y.; Kuo, T.C.; Hu, W.W.; Chang, Y.; Chen, C.S.; Chen, H.C.; Chen, W.Y. Optimization of DNA-directed immobilization on mixed oligo(ethylene glycol) monolayers for immunodetection. Anal. Biochem. 2012, 423, 26–35. [Google Scholar] [CrossRef]
- Niemeyer, C.M.; Wacker, R.; Adler, M. Combination of DNA-directed immobilization and immuno-PCR: Very sensitive antigen detection by means of self-assembled DNA-protein conjugates. Nucleic Acids Res. 2003, 31, e90. [Google Scholar] [CrossRef] [PubMed]
- Araz, M.K.; Apori, A.A.; Salisbury, C.M.; Herr, A.E. Microfluidic barcode assay for antibody-based confirmatory diagnostics. Lab Chip 2013, 13, 3910–3920. [Google Scholar] [CrossRef] [PubMed]
- Dixit, C.K.; Aguirre, G.R. Protein Microarrays with Novel Microfluidic Methods: Current Advances. Microarrays (Basel) 2014, 3, 180–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, A.; Zhang, J.; Henderson, J.A.; Kenis, P.J.A. Protein Immobilization using Microfluidics: A Lab-on-a-Chip Experiment. Chem. Educ. 2012, 17, 157–162. [Google Scholar]
- Blagovic, K.; Kim, L.Y.; Voldman, J. Microfluidic perfusion for regulating diffusible signaling in stem cells. PLoS One 2011, 6, e22892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.-W.; Chang, P.-Y.; Huang, H.-Y.; Li, C.-J.; Tien, C.-H.; Yao, D.-J.; Fan, S.-K.; Hsu, W.; Liu, C.-H. Womb-on-a-chip biomimetic system for improved embryo culture and development. Sens. Actuators B Chem. 2016, 226, 218–226. [Google Scholar] [CrossRef]
- Wielhouwer, E.M.; Ali, S.; Al-Afandi, A.; Blom, M.T.; Riekerink, M.B.; Poelma, C.; Westerweel, J.; Oonk, J.; Vrouwe, E.X.; Buesink, W.; et al. Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 2011, 11, 1815–1824. [Google Scholar] [CrossRef]
- Yang, Z.; Maeda, R. Socket with built-in valves for the interconnection of microfluidic chips to macro constituents. J. Chromatogr. A 2003, 1013, 29–33. [Google Scholar] [CrossRef]
- Chen, A.; Pan, T. Three-dimensional fit-to-flow microfluidic assembly. Biomicrofluidics 2011, 5, 46505–465059. [Google Scholar] [CrossRef]
- Glavan, A.C.; Martinez, R.V.; Maxwell, E.J.; Subramaniam, A.B.; Nunes, R.M.; Soh, S.; Whitesides, G.M. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper. Lab Chip 2013, 13, 2922–2930. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, R.A.G.; Materon, E.M.; Melendez, M.E.; Carvalho, A.L.; Faria, R.C. Disposable Microfluidic Immunoarray Device for Sensitive Breast Cancer Biomarker Detection. ACS Appl. Mater. Interfaces 2017, 9, 27433–27440. [Google Scholar] [CrossRef] [PubMed]
Steps | Purposes | Gate1 | Gate2 | Gate3 | Gate4 | Notes |
---|---|---|---|---|---|---|
1 | Fill fluid through all gates | Open or closed | Open or closed | Open or closed | Inject PBS | For the gates 1~3, one gate is open, two are closed |
2 | To modify the surface of coverslip with glutaraldehyde | Inject 8% glutaraldehyde | Closed | Opened | Closed | Incubate for 30 min |
3 | Remove excess glutaraldehyde | Open (no syringe) | Closed | Opened | Inject PBS | |
4 | Load and immobilize GFP | Closed | Manually load GFP | Suction applied | Closed | Incubate for 30 min |
5 | Remove excess GFP | Open (no syringe) | Closed | Closed | Inject PBS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lue, J.-H.; Su, Y.-S.; Kuo, T.-C. Workshop, Cost-Effective and Streamlined Fabrications of Re-Usable World-To-Chip Connectors for Handling Sample of Limited Volume and for Assembling Chip Array. Sensors 2018, 18, 4223. https://doi.org/10.3390/s18124223
Lue J-H, Su Y-S, Kuo T-C. Workshop, Cost-Effective and Streamlined Fabrications of Re-Usable World-To-Chip Connectors for Handling Sample of Limited Volume and for Assembling Chip Array. Sensors. 2018; 18(12):4223. https://doi.org/10.3390/s18124223
Chicago/Turabian StyleLue, Jiann-Hwa, Yu-Sheng Su, and Tai-Chih Kuo. 2018. "Workshop, Cost-Effective and Streamlined Fabrications of Re-Usable World-To-Chip Connectors for Handling Sample of Limited Volume and for Assembling Chip Array" Sensors 18, no. 12: 4223. https://doi.org/10.3390/s18124223
APA StyleLue, J. -H., Su, Y. -S., & Kuo, T. -C. (2018). Workshop, Cost-Effective and Streamlined Fabrications of Re-Usable World-To-Chip Connectors for Handling Sample of Limited Volume and for Assembling Chip Array. Sensors, 18(12), 4223. https://doi.org/10.3390/s18124223