Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Setup
2.3. Etching and Calibration
2.4. Silanization of FBG Sensors
2.5. Atomic Force Microscopy Analysis of the Functionalized Surface
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, M.; Li, J.; Li, B.X. A colorimetric aptamer biosensor based on cationic polythiophene derivative as peroxidase mimetics for the ultrasensitive detection of thrombin. Talanta 2017, 175, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Marchetti, M. Hemostatic biomarkers in cancer progression. Thromb. Res. 2018, 164, S54–S61. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.J.; Dye, R.G.; Snider, T.A.; Wang, S.P.; Clinkenbeard, K.D. Bi-cell surface plasmon resonance detection of aptamer mediated thrombin capture in serum. Biosens. Bioelectron. 2011, 26, 4832–4836. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, D.M.; Zhang, Q.; Lu, Y.L.; Li, N.T.; Chen, Q.W.; Liu, Q.J. Electrophoresis-enhanced localized surface plasmon resonance sensing based on nanocup array for thrombin detection. Sens. Actuators B Chem. 2016, 232, 219–225. [Google Scholar] [CrossRef]
- Kim, H.; An, Z.; Jang, C.-H. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem. J. 2018, 142, 71–79. [Google Scholar]
- Joshi, R.; Janagama, H.; Dwivedi, H.P.; Kumar, T.M.A.S.; Jaykus, L.-A.; Schefers, J.; Sreevatsan, S. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 2009, 23, 20–28. [Google Scholar] [CrossRef]
- Khati, M. The future of aptamers in medicine. J. Clin. Pathol. 2010, 63. [Google Scholar] [CrossRef]
- Bruno, J.G.; Kiel, J.L. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens. Bioelectron. 1999, 14. [Google Scholar] [CrossRef]
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 1992, 355, 564–566. [Google Scholar] [CrossRef]
- Tasset, D.M.; Kubik, M.F.; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Boil. 1997, 272, 688–698. [Google Scholar] [CrossRef]
- Wang, W.; Xu, D.D.; Pang, D.W.; Tang, H.W. Fluorescent sensing of thrombin using a magnetic nano-platform with aptamer-target-aptamer sandwich and fluorescent silica nanoprobe. J. Lumin. 2017, 187, 9–13. [Google Scholar] [CrossRef]
- Lin, Y.N.; Li, J.B.; Wang, Y.H.; Sun, Y.L.; Ding, C.F.; Sun, W.Y.; Luo, C.N. A chemiluminescence biosensor for the detection of thrombin based on the aptamer composites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Li, Y.Q.; Xu, N.; Pan, J.H.; Chen, T.F.; Chen, Y.W.; Gao, W.H. Dual-signal amplification strategy for electrochemiluminescence sandwich biosensor for detection of thrombin. Sens. Actuators B Chem. 2017, 240, 742–748. [Google Scholar] [CrossRef]
- Sun, C.; Han, Q.R.; Wang, D.Y.; Xu, W.M.; Wang, W.J.; Zhao, W.B.; Zhou, M. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection. Anal. Chim. Acta 2014, 850, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, Y.; Francis, T.J.; Blair, D.A.D.; Walsh, R.; DeRosa, M.C.; Albert, J. In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor. Anal. Chem. 2011, 83, 7027–7034. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.; Queiros, R.B.; Santos, J.L.; Martins, M.C.L.; Viegas, D.; Jorge, P.A.S. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of care diagnostic. In Proceedings of the Conference on Plasmonics in Biology and Medicine XI, San Francisco, CA, USA, 1–6 February 2014. [Google Scholar]
- Umesh, S.; Asokan, S. A Brief Overview of the Recent Bio-Medical Applications of Fiber Bragg Grating Sensors. J. Indian Inst. Sci. 2014, 94, 319–328. [Google Scholar]
- Saini, S.S.; Stanford, C.; Lee, S.M.; Park, J.; DeShong, R.; Bentley, W.E.; Dagenais, M. Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors. IEEE Photonics Technol. Lett. 2007, 19, 1341–1343. [Google Scholar] [CrossRef]
- Bal, H.K.; Brodzeli, Z.; Dragomir, N.M.; Collins, S.F.; Sidiroglou, F. Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification. Appl. Opt. 2012, 51, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, C.; Hughes, M.; Nagel, D.; Hine, A.; Zhang, L. EDC-mediated oligonucleotide immobilization on a long period grafting optical biosensor. J. Biosens. Bioelectron. 2015, 6, 1. [Google Scholar]
- Chiavaioli, F.; Baldini, F.; Tombelli, S.; Trono, C.; Giannetti, A. Biosensing with optical fiber gratings. Nanophotonics 2017, 6, 663–679. [Google Scholar] [CrossRef] [Green Version]
- Linzi, H.; Wu, Z.; Zhang, X.; Qiangqiang, F.; Jian, X.; Yong, T.; Tuan, G.; Bai-Ou, G. High sensitive thrombin protein detection by plasmonic tilted fiber grating biosensor. In Proceedings of the Workshop on Specialty Optical Fibers and Their Applications, Hong Kong, China, 4–6 November 2015. [Google Scholar]
- Coelho, L.; de Almeida, J.M.M.; Santos, J.L.; Jorge, P.A.D.; Martins, M.C.L.; Viegas, D.; Queiros, R.B. Aptamer-based fiber sensor for thrombin detection. J. Biomed. Opt. 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Arghir, I.; Spasic, D.; Verlinden, B.E.; Delport, F.; Lammertyn, J. Improved surface plasmon resonance biosensing using silanized optical fibers. Sens. Actuators B Chem. 2015, 216, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.; Lepinay, S.; Caucheteur, C.; DeRosa, M.C. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor. Methods 2013, 63, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Shivananju, B.N.; Renilkumar, M.; Prashanth, G.R.; Asokan, S.; Varma, M.M. Detection Limit of Etched Fiber Bragg Grating Sensors. J. Lightwave Technol. 2013, 31, 2441–2447. [Google Scholar] [CrossRef]
- Libish, T. Design and Development of Fiber Grating Based Chemical and Bio-Sensors. Ph.D. Thesis, Cochin University of Science and Technology, Kerala, India, 2015. [Google Scholar]
- Li, X.G.; Nguyen, L.V.; Zhao, Y.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sens. Actuators B Chem. 2018, 269, 103–109. [Google Scholar] [CrossRef]
- Tsigaridas, G.; Polyzos, D.; Loannou, A.; Fakis, M.; Persephonis, P. Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings. Sens. Actuators A Phys. 2014, 209, 9–15. [Google Scholar] [CrossRef]
- Korganbayev, S.; Ayupova, T.; Sypabekova, M.; Bekmurzayeva, A.; Shaimerdenova, M.; Dukenbayev, K.; Molardi, C.; Tosi, D. Partially etched chirped fiber Bragg grating (pECFBG) for joint temperature, thermal profile, and refractive index detection. Opt. Express 2018, 26, 18708–18720. [Google Scholar] [CrossRef]
- Quero, G.; Zuppolini, S.; Consales, M.; Diodato, L.; Vaiano, P.; Venturelli, A.; Santucci, M.; Spyrakis, F.; Costi, M.P.; Giordano, M.; et al. Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria. Sens. Actuators B Chem. 2016, 230, 510–520. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Tang, F.J.; Bao, Y.; Tang, Y.; Chen, G.D. A Fe-C coated long-period fiber grating sensor for corrosion-induced mass loss measurement. Opt. Lett. 2016, 41, 2306–2309. [Google Scholar] [CrossRef]
- Pham, T.B.; Bui, H.; Le, H.T.; Pham, V.H. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water. Sensors 2017, 17, 7. [Google Scholar] [CrossRef]
- Tyagi, D.; Mishra, S.K.; Zou, B.; Lin, C.C.; Hao, T.; Zhang, G.; Lu, A.P.; Chiang, K.S.; Yang, Z.J. Nano-functionalized long-period fiber grating probe for disease-specific protein detection. J. Mater. Chem. B 2018, 6, 386–392. [Google Scholar] [CrossRef]
- Tosi, D. Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.M.; Jin, Y.L.; Gu, N.; Huang, L. A method to control the fabrication of etched optical fiber probes with nanometric tips. J. Opt. 2010, 12. [Google Scholar] [CrossRef]
- Yunus, W.M.B.; Rahman, A.B. Refractive-index of solutions at high-concentrations. Appl. Opt. 1988, 27, 3341–3343. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.C.; Chu, C.J.; Tsai, L.C.; Lin, H.Y.; Wu, C.S.; Wu, Y.P.; Wu, Y.N.; Shieh, D.B.; Su, Y.W.; Chen, C.D. Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Lett. 2007, 7, 3656–3661. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Tu, L.; Klein, T.; Feng, Y.L.; Wang, J.P. Surface Modification for Protein and DNA Immobilization onto GMR Biosensor. IEEE Trans. Magn. 2013, 49, 296–299. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, L.; Hu, H.F. Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure. IEEE Sens. J. 2015, 15, 6348–6353. [Google Scholar] [CrossRef]
- Iadicicco, A.; Campopiano, S.; Cutolo, A.; Giordano, M.; Cusano, A. Thinned fiber Bragg gratings for sensing applications. In Proceedings of the WFOPC 2005: 4th IEEE/LEOS Workshop on Fibres and Optical Passive Components, Palermo, Italy, 22–24 June 2005; pp. 216–221. [Google Scholar]
- Liu, X.M.; Zhang, X.M.; Cong, J.; Xu, J.; Chen, K.S. Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating. Sens. Actuators B Chem. 2003, 96, 468–472. [Google Scholar] [CrossRef]
- Ray, P.; Srijith, K.; Srinivasan, B. Enhanced Sensitivity Etched Fiber Bragg Gratings for Precise Measurement of Refractive Index. In Proceedings of the International Conference on Optics and Photonics (ICOP), Kolkata, India, 20–22 February 2015. [Google Scholar]
- Shih, M.C.; Yang, H.H.; Shih, C.H. Measurement of the index of refraction of an liquid by a cladding depleted fiber Bragg grating. Opt. Quantum Electron. 2016, 48, 146. [Google Scholar] [CrossRef]
- Puygranier, B.A.F.; Dawson, P. Chemical etching of optical fibre tips-experiment and model. Ultramicroscopy 2000, 85, 235–248. [Google Scholar] [CrossRef]
- Ryu, G.; Dagenais, M.; Hurley, M.T.; DeShong, P. High Specificity Binding of Lectins to Carbohydrate-Functionalized Fiber Bragg Gratings: A New Model for Biosensing Applications. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 647–653. [Google Scholar] [CrossRef]
- Chryssis, A.N.; Saini, S.S.; Lee, S.M.; Yi, H.M.; Bentley, W.E.; Dagenais, M. Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber bragg grating sensors. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 864–872. [Google Scholar] [CrossRef]
- Iadicicco, A.; Cusano, A.; Campopiano, S.; Cutolo, A.; Giordano, M. Thinned fiber Bragg gratings as refractive index sensors. IEEE Sens. J. 2005, 5, 1288–1295. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Bock, W.J.; Mikulic, P.; Chinnappan, R.; Ng, A.; Tolba, M.; Zourob, M. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosens. Bioelectron. 2012, 35, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yue, Z.; Romeo, T.; Weber, J.; Scheuermann, T.; Moulton, S.; Wallace, G. Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 2013, 9, 8671–8677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Cao, H.; Yu, Y.; Chen, S. Corrosion Protection of Silane Coatings Modified by Carbon Nanotubes on Stainless Steel. Int. J. Electrochem. Sci. 2015, 10, 3497–3509. [Google Scholar]
- Maguis, S.; Laffont, G.; Ferdinand, P.; Carbonnier, B.; Kham, K.; Mekhalif, T.; Millot, M.C. Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing. Opt. Express 2008, 16, 19049–19062. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; He, M.A.; Zhu, A.N.; Song, B.D.; Sheng, J.W.; Shi, H.C. Compact quantitative optic fiber-based immunoarray biosensor for rapid detection of small analytes. Biosens. Bioelectron. 2010, 26, 16–22. [Google Scholar] [CrossRef]
- Tedeschi, L.; Domenici, C.; Ahluwalia, A.; Baldini, F.; Mencaglia, A. Antibody immobilisation on fibre optic TIRF sensors. Biosens. Bioelectron. 2003, 19, 85–93. [Google Scholar] [CrossRef]
- Sun, D.D.; Ran, Y.; Wang, G.J. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating. Sensors 2017, 17, 2559. [Google Scholar] [CrossRef] [PubMed]
- Moller, R.; Csaki, A.; Kohler, J.M.; Fritzsche, W. DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold. Nucleic Acids Res. 2000, 28. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekmurzayeva, A.; Dukenbayev, K.; Shaimerdenova, M.; Bekniyazov, I.; Ayupova, T.; Sypabekova, M.; Molardi, C.; Tosi, D. Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors 2018, 18, 4298. https://doi.org/10.3390/s18124298
Bekmurzayeva A, Dukenbayev K, Shaimerdenova M, Bekniyazov I, Ayupova T, Sypabekova M, Molardi C, Tosi D. Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors. 2018; 18(12):4298. https://doi.org/10.3390/s18124298
Chicago/Turabian StyleBekmurzayeva, Aliya, Kanat Dukenbayev, Madina Shaimerdenova, Ildar Bekniyazov, Takhmina Ayupova, Marzhan Sypabekova, Carlo Molardi, and Daniele Tosi. 2018. "Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin" Sensors 18, no. 12: 4298. https://doi.org/10.3390/s18124298
APA StyleBekmurzayeva, A., Dukenbayev, K., Shaimerdenova, M., Bekniyazov, I., Ayupova, T., Sypabekova, M., Molardi, C., & Tosi, D. (2018). Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors, 18(12), 4298. https://doi.org/10.3390/s18124298