The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor
Abstract
:1. Introduction
2. Experimental
2.1. ZSM-5 Zeolite Preparation
2.2. Characterization
2.3. Sensors Fabrication and Measurements
3. Results and Discussion
3.1. Materials Characterization
3.2. Gas Sensing Properties
3.3. Gas Sensing Mechanism
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kawamura, K.; Kerman, K.; Fujihara, M.; Nagatani, N.; Hashiba, T.; Tamiya, E. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sens. Actuators B Chem. 2005, 105, 495–501. [Google Scholar] [CrossRef]
- Manoonkitiwongsa, P.S.; Schultz, R.L. Proper nomenclature of formaldehyde and paraformaldehyde fixatives for histochemistry. Histochem. J. 2001, 34, 365–367. [Google Scholar]
- Koziel, J.A.; Noah, J.; Pawliszyn, J. Field sampling and determination of formaldehyde in indoor air with solid-phase microextraction and on-fiber derivatization. Environ. Sci. Technol. 2001, 35, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nakano, N.; Suzuki, K. Portable sick house syndrome gas monitoring system based on novel colorimetric reagents for the highly selective and sensitive detection of formaldehyde. Environ. Sci. Technol. 2003, 37, 5695–5700. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- DU, H.-Y.; Wang, J.; WU, N. Improvement of gas sensing-characteristics of formaldehyde gas sensor by doping. Instrum. Tech. Sens. 2009, 74, 378–383. [Google Scholar]
- Zheng, W.; Lu, X.; Wang, W.; Dong, B.; Zhang, H.; Wang, Z.; Xu, X.; Wang, C. A rapidly responding sensor for methanol based on electrospun In2O3-SnO2 nanofibers. J. Am. Ceram. Soc. 2010, 93, 15–17. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Yeh, C.-S. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. C 2007, 111, 7256–7259. [Google Scholar] [CrossRef]
- Du, H.-Y.; Wang, J.; Su, M.; Yao, P.; Zheng, Y.; Yu, N. Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sens. Actuators B Chem. 2012, 166, 746–752. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, J.; Wang, Y.A.; Fang, X.; Huang, Y.; Chen, W.; Liu, Q.; Zhang, D. Single porous SnO2microtubes templated from papilio maacki bristles: New structure towards superior gas sensing. J. Mater. Chem. A 2014, 2, 4543–4550. [Google Scholar] [CrossRef]
- Huang, J.; Li, G.; Huang, Z.; Huang, X.; Liu, J. Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensor. Sens. Actuators B Chem. 2006, 114, 1059–1063. [Google Scholar] [CrossRef]
- Liewhiran, C.; Tamaekong, N.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films. Sens. Actuators B Chem. 2013, 176, 893–905. [Google Scholar] [CrossRef]
- Jang, B.-H.; Landau, O.; Choi, S.-J.; Shin, J.; Rothschild, A.; Kim, I.-D. Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature. Sens. Actuators B Chem. 2013, 188, 156–168. [Google Scholar] [CrossRef]
- Yimlamai, I.; Niamlang, S.; Chanthaanont, P.; Kunanuraksapong, R.; Changkhamchom, S.; Sirivat, A. Electrical conductivity response and sensitivity of ZSM-5, Y, and mordenite zeolites towards ethanol vapor. Ionics 2011, 17, 607–615. [Google Scholar] [CrossRef]
- Hernández, P.T.; Hailes, S.; Parkin, I. Hydrocarbon detection with metal oxide semiconducting gas sensors modified by overlayer or admixture of zeolites Na-A, H-Y and H-ZSM-5. Sens. Actuators B Chem. 2017, 242, 1281–1295. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Li, M.; Ma, L. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens. 2015, 1, 243–250. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, X.; Dutta, P.K. Exploitation of unique properties of zeolites in the development of gas sensors. Sensors 2012, 12, 5170–5194. [Google Scholar] [CrossRef] [PubMed]
- Sahner, K.; Hagen, G.; Schönauer, D.; Reiß, S.; Moos, R. Zeolites—Versatile materials for gas sensors. Solid State Ion. 2008, 179, 2416–2423. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Long, Y. Zeolite-based materials for gas sensors. Sensors 2006, 6, 1751–1764. [Google Scholar] [CrossRef]
- Binions, R.; Afonja, A.; Dungey, S.; Lewis, D.W.; Parkin, I.P.; Williams, D.E. Discrimination effects in zeolite modified metal oxide semiconductor gas sensors. IEEE Sens. J. 2011, 11, 1145–1151. [Google Scholar] [CrossRef]
- Varsani, P.; Afonja, A.; Williams, D.E.; Parkin, I.P.; Binions, R. Zeolite-modified WO3 gas sensors—Enhanced detection of NO2. Sens. Actuators B Chem. 2011, 160, 475–482. [Google Scholar] [CrossRef]
- Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J.; Santamaria, J. Development and application of micromachined Pd/ SnO2 gas sensors with zeolite coatings. Sens. Actuators B Chem. 2008, 133, 435–441. [Google Scholar] [CrossRef]
- Sahner, K.; Schönauer, D.; Moos, R.; Matam, M.; Post, M.L. Effect of electrodes and zeolite cover layer on hydrocarbon sensing with p-type perovskite SrTi0.8Fe0.2O3−δ thick and thin films. J. Mater. Sci. 2006, 41, 5828–5835. [Google Scholar] [CrossRef]
- Fukui, K.; Nishida, S. CO gas sensor based on Au–La2O3 added SnO2 ceramics with siliceous zeolite coat. Sens. Actuators B Chem. 1997, 45, 101–106. [Google Scholar] [CrossRef]
- Sahner, K.; Schönauer, D.; Kuchinke, P.; Moos, R. Zeolite cover layer for selectivity enhancement of p-type semiconducting hydrocarbon sensors. Sens. Actuators B Chem. 2008, 133, 502–508. [Google Scholar] [CrossRef]
- Jadsadapattarakul, D.; Thanachayanont, C.; Nukeaw, J.; Sooknoi, T. Improved selectivity, response time and recovery time by [010] highly preferred-orientation silicalite-1 layer coated on SnO2 thin film sensor for selective ethylene gas detection. Sens. Actuators B Chem. 2010, 144, 73–80. [Google Scholar] [CrossRef]
- Yang, P.; Lau, C.; Liang, J.Y.; Lu, J.Z.; Liu, X. Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Luminescence 2007, 22, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Haw, J.F. Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys. 2002, 4, 5431–5441. [Google Scholar] [CrossRef]
- Konno, H.; Tago, T.; Nakasaka, Y.; Watanabe, G.; Masuda, T. Characterization and catalytic performance of modified nano-scale ZSM-5 for the acetone-to-olefins reaction. Appl. Catal. A Gen. 2014, 475, 127–133. [Google Scholar] [CrossRef]
- Viswanadham, N.; Kamble, R.; Singh, M.; Kumar, M.; Dhar, G.M. Catalytic properties of nano-sized ZSM-5 aggregates. Catal. Today 2009, 141, 182–186. [Google Scholar] [CrossRef]
- Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J.; Santamarıa, J. Use of zeolite films to improve the selectivity of reactive gas sensors. Catal. Today 2003, 82, 179–185. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Long, Y. Nano-tin dioxide/NaY zeolite composite material: Preparation, morphology, adsorption and hydrogen sensitivity. Microporous Mesoporous Mater. 2005, 83, 60–66. [Google Scholar] [CrossRef]
- Xu, D. Preparation and Investigation on Properties of Hierarchical Porous Nano-Molecular Sieves. Ph.D. Thesis, Jilin University, Jilin, China, 2011. [Google Scholar]
- Du, H.-Y.; Wang, J.; Yu, P.; Yu, N.-S.; Sun, Y.-H.; Tian, J.-L. Investigation of gas sensing materials tin oxide nanofibers treated by oxygen plasma. J. Nanopart. Res. 2014, 16, 1–10. [Google Scholar] [CrossRef]
- Yang, H. The Effect of Crystal Size on Selective Catalytic Reduction of NOx by Acetylene over Zeolites. Master’s Thesis, Dalian University of Technology, Dalian, China, 2007. [Google Scholar]
- Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J.R.; Santamaria, J. Gas detection with SnO2 sensors modified by zeolite films. Sens. Actuators B Chem. 2007, 124, 99–110. [Google Scholar] [CrossRef]
- Trimboli, J.; Dutta, P.K. Oxidation chemistry and electrical activity of Pt on titania: Development of a novel zeolite-filter hydrocarbon sensor. Sens. Actuators B Chem. 2004, 102, 132–141. [Google Scholar] [CrossRef]
- Xiao, L. Preparation and Catalytic Properties of SnO2 with Different Morphologies. Master’s Thesis, Nanchang University, Nanchang, China, 2014. [Google Scholar]
- Shetti, V.N.; Kim, J.; Srivastava, R.; Choi, M.; Ryoo, R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. J. Catal. 2008, 254, 296–303. [Google Scholar] [CrossRef]
- Chen, E.X.; Yang, H.; Zhang, J. Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 2014, 53, 5411–5413. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zeng, D.; Tian, S.; Zhang, S.; Xie, C. Hierarchical porous SnO2 micro-rods topologically transferred from tin oxalate for fast response sensors to trace formaldehyde. Sens. Actuators B Chem. 2014, 190, 585–592. [Google Scholar] [CrossRef]
- Chung, F.-C.; Wu, R.-J.; Cheng, F.-C. Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens. Actuators B Chem. 2014, 190, 1–7. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Yao, P. Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens. Actuators B Chem. 2011, 156, 723–730. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J. 1D NiO-SnO2 heterojunction nanofibers as acetone sensor. KnE Mater. Sci. 2016, 1, 172–176. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Cong, S.-Y.; Qi, J.-Q.; Xu, B.-K. An enrichment method to detect low concentration formaldehyde. Sens. Actuators B Chem. 2008, 134, 1010–1015. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J.; Yao, P.; Li, X. A microscale formaldehyde gas sensor based on Zn2Sno4/Sno2 and produced by combining hydrothermal synthesis with post-synthetic heat treatment. J. Mater. Sci. 2013, 49, 1246–1255. [Google Scholar] [CrossRef]
- Tang, W. Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: Heterojunction effects. J. Phys. D Appl. Phys. 2017, 50, 475105. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, L.; Xie, T.; Wang, D.; Lin, Y. Study on the gas-sensitive properties for formaldehyde based on SnO2-ZnO heterostructure in uv excitation. Sens. Actuators B Chem. 2018, 254, 863–871. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, T.; Wang, Z.; Tsukimoto, S.; Saito, M.; Ikuhara, Y. Selective detection of formaldehyde gas using a cd-doped TiO2-SnO2 sensor. Sensors 2009, 9, 9029–9038. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Djerdj, I.; Antonietti, M.; Smarsly, B. Polymer-assisted generation of antimony-doped SnO2 nanoparticles with high crystallinity for application in gas sensors. Small 2008, 4, 1656–1660. [Google Scholar] [CrossRef] [PubMed]
Zeolite | MFI-S | MFI-70 | MFI-150 | MFI-470 |
---|---|---|---|---|
SiO2/Al2O3 | 70 | 70 | 150 | 470 |
Grain size | 300 nm | ~1 μm | ~1 μm | ~1 μm |
Sensor | 10 ppm Formaldehyde | 10 ppm Acetone | 10 ppm Benzene | 10 ppm Toluene | 10 ppm Ammonia |
---|---|---|---|---|---|
SnO2 | 3.5 | 5.0 | 1.4 | 1.6 | 1.4 |
MFI-S coated SnO2 | 11.0 | 3.5 | 1.4 | 1.9 | 1.4 |
MFI-70 coated SnO2 | 4.4 | 7.5 | 1.5 | 2.0 | 1.4 |
MFI-150 coated SnO2 | 4.0 | 6.8 | 1.4 | 1.7 | 1.4 |
MFI-470 coated SnO2 | 3.0 | 5.4 | 1.3 | 1.6 | 1.3 |
Type | Structures of the Sensing Materials | Response Value (Concentration, Relative Humidity) | Operating Temperature (°C) | Response Time (s) | Recovery Time (s) |
---|---|---|---|---|---|
Obtained materials | MFI-S coated SnO2 | 11.0 (10 ppm, 45% RH) | 300 | 50 | 88 |
Zeolite/metal oxide composite | ZnO and zeolitic imidazolate framework-8 core–shell heterostructures [16] | ~13.0 (100 ppm,50% RH) | 300 | 16 | 9 |
Zeolitic imidazolate framework [40] | 13.9 (100 ppm, <70% RH) | 150 | ~100 | ~120 | |
Hierarchical porous nanostructures | Hierarchical porous nanostructures of SnO2 [41] | ~8.0 (10 ppm) | 330 | 4.03 | _ |
Au@SnO2 core–shell structure [42] | 2.9 (50 ppm, 50% RH) | room temperature | 80 | 62 | |
SnO2 and other oxides doped/heterostructures | NiO-doped SnO2 nanofiber [43] | 6.3 (10 ppm) | 200 | 50 | 80 |
1D NiO-SnO2 nanofibers [44] | 1.2 (20 ppm) | 275 | _ | _ | |
SnO2/In2O3 hetero-nanofiber [9] | 7.5 (10 ppm) | 375 | ~50 | ~70 | |
MWCNTs-doped SnO2 [45] | ~1.5 (10 ppm) | 250 | >100 | >90 | |
Zn2SnO4/SnO2 cubes [46] | 19.98 (20 ppm) | 200 | 66 | 27 | |
SnO2/ZnO nanofibers [47] | ~4.0 (50 ppm) | 350 | _ | _ | |
3D center-hollow architecture and polyporous surface SnO2-ZnO composites [48] | ~2 (10 ppm) | room temperature | _ | _ | |
Cd-Doped TiO2-SnO2 [49] | 32 (200 ppm) | 320 | 25 | 17 | |
Antimony-Doped SnO2 nanoparticles [50] | ~7.0 (10 ppm) | 136 | _ | _ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, J.; Li, X.; Du, H.; Huang, Q.; Wang, X. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor. Sensors 2018, 18, 390. https://doi.org/10.3390/s18020390
Sun Y, Wang J, Li X, Du H, Huang Q, Wang X. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor. Sensors. 2018; 18(2):390. https://doi.org/10.3390/s18020390
Chicago/Turabian StyleSun, Yanhui, Jing Wang, Xiaogan Li, Haiying Du, Qingpan Huang, and Xiaofeng Wang. 2018. "The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor" Sensors 18, no. 2: 390. https://doi.org/10.3390/s18020390
APA StyleSun, Y., Wang, J., Li, X., Du, H., Huang, Q., & Wang, X. (2018). The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor. Sensors, 18(2), 390. https://doi.org/10.3390/s18020390