Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing
Abstract
:1. Introduction
- RQ1: Is it possible to identify levels with regard to a user’s mental workload within very short time windows (order of milliseconds) based on psychophysiological signals recorded during a Web browsing task?
- RQ2: Is it possible to accurately classify in real time a user’s mental workload, both when her gaze is fixed on a Web element and when her gaze is transiting from one Web element to another, by combining different non-invasive psychophysiological sensors?
- H1: Mental workload is significantly smaller when the user’s attention is switching from one Web element to another than when she is focused on a Web element.
2. Background
2.1. Assessment Methods
2.2. Psychophysiological Measurements
- Fixations: moments during which the gaze is relatively fixed or focused. They occur because sharp vision is only possible within a small area in the human eye called the fovea. It is useful to determine when eye fixation occurs because, in most cases, it coincides with attention.
- Saccades: rapid eye movements or jumps from one fixation point to another. Saccades follow a pattern (or trajectory) depending on several factors: what is currently being looked at, visual target tracking, experience, and emotions.
3. Literature Review
3.1. Assessment of Mental Workload with Psychophysiological Sensors
3.2. Assessment of Mental Workload in Web Environments
4. Materials and Methods
4.1. Participants
4.2. Psychophysiological Sensors
4.3. Task Design
4.4. Experimental Procedure
4.5. Data Analysis
4.5.1. Time Window Definition
- Active window: Time during which the user fixes her gaze on a specific area of interest (AoI), which may correspond to a news headline, an advertisement, or the menu bar of the Web site.
- Transition window: Time that elapses while the user is not fixing her gaze on any of the areas of interest. It can be a transition between two elements or towards the same element.
4.5.2. Data Preprocessing
4.5.3. Feature Extraction
4.5.4. Clustering
4.5.5. Feature Selection and Applied Machine Learning Models
5. Results
5.1. Statistical Analysis
Baseline Statistical Analysis
5.2. Classification
5.3. Evaluating Psychophysiological Sensors
5.4. Evaluating Time Overhead
6. Discussion
7. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Landauer, T. The Trouble with Computers: Usefulness, Usability, and Productivity; MIT Press: Cambridge, MA, USA, 1995; Volume 11, ISBN 0262121867. [Google Scholar]
- Gwizdka, J. Distribution of cognitive load in Web search. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2167–2187. [Google Scholar] [CrossRef]
- Albers, M.J. Tapping as a measure of cognitive load and website usability. In Proceedings of the 29th ACM International Conference on Design of Communication—SIGDOC ’11, Pisa, Italy, 3–5 October 2011; ACM Press: New York, NY, USA, 2011; pp. 25–32. [Google Scholar]
- Longo, L.; Rusconi, F.; Noce, L.; Barrett, S. The importance of Human Mental Workload in Web design. In Proceedings of the 8th International Conference on Web Information Systems and Technologies WEBIST 2012, Porto, Portugal, 18–21 April 2012; pp. 403–409. [Google Scholar]
- Buscher, G.; Cutrell, E.; Morris, M.R.; Buscher, G.; Cutrell, E.; Morris, M.R. What do you see when you’re surfing? Using eye tracking to predict salient regions of web pages. In Proceedings of the 27th International Conference on Human Factors in Computing Systems—CHI 09, Boston, MA, USA, 4–9 April 2009; ACM Press: New York, NY, USA, 2009; pp. 21–30. [Google Scholar]
- Buscher, G.; Dumais, S.T.; Cutrell, E.; Buscher, G.; Dumais, S.; Cutrell, E. The good, the bad, and the random: An eye-tracking study of ad quality in web search. Proceeding of the 33rd international ACM SIGIR Conference on Research and Development in Information Retrieval—SIGIR’10, Geneva, Switzerland, 19–23 July 2010; ACM Press: New York, NY, USA, 2010; pp. 42–49. [Google Scholar]
- Dumais, S.T.; Buscher, G.; Cutrell, E. Individual differences in gaze patterns for web search. Proceeding of the Third Symposium on Information Interaction in Context—IIiX ’10, New Brunswick, NJ, USA, 18–21 August 2010; ACM Press: New York, NY, USA, 2010; pp. 185–194. [Google Scholar]
- Wickens, C.D. Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 2002, 3, 159–177. [Google Scholar] [CrossRef]
- Jung, J.; Maier, A.; Gross, A.; Ruiz, N.; Chen, F.; Yin, B. Investigating the Effect of Cognitive Load on UX: A Driving Study. In Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications 2011, AutomotiveUI’11, Salzburg, Austria, 29 November–2 December 2011. [Google Scholar]
- Fritz, T.; Begel, A.; Müller, S.C.; Yigit-Elliott, S.; Züger, M. Using Psycho-physiological Measures to Assess Task Difficulty in Software Development. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 402–413. [Google Scholar]
- Haapalainen, E.; Kim, S.; Forlizzi, J.F.; Dey, A.K. Psychophysiological measures for assessing cognitive load. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing, Copenhagen, Denmark, 26–29 September 2010; pp. 301–310. [Google Scholar]
- Ikehara, C.S.; Crosby, M.E. Assessing Cognitive Load with Physiological Sensors. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 6 January 2005; IEEE: Piscataway, NJ, USA, 2010; p. 295a. [Google Scholar]
- Hogervorst, M.A.; Brouwer, A.-M.; van Erp, J.B.F. Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload. Front. Neurosci. 2014, 8, 322. [Google Scholar] [CrossRef] [PubMed]
- Khusainov, R.; Azzi, D.; Achumba, I.; Bersch, S. Real-Time Human Ambulation, Activity, and Physiological Monitoring: Taxonomy of Issues, Techniques, Applications, Challenges and Limitations. Sensors 2013, 13, 12852–12902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzaniga, M.S.; Ivry, R.B.; Mangun, G.R. Cognitive Neuroscience: The Biology of the Mind. Q. Rev. Biol. 2009, 84, 196–197. [Google Scholar]
- Davis, S.F.; Palladino, J.J.; Christopherson, K. Psychology; Pearson: Boston, MA, USA, 2012; ISBN 0205848559. [Google Scholar]
- Bailey, B.P.; Iqbal, S.T. Understanding changes in mental workload during execution of goal-directed tasks and its application for interruption management. ACM Trans. Comput. Interact. 2008, 14, 1–28. [Google Scholar] [CrossRef]
- Hess, E.H.; Polt, J.M. Pupil Size in Relation to Mental Activity during Simple Problem-Solving. Science 1964, 143, 1190–1192. [Google Scholar] [CrossRef] [PubMed]
- Hahnemann, D.; Beatty, J.; Kahneman, D.; Beatty, J. Pupillary responses in a pitch-discrimination task. Percept. Psychophys. 1967, 2, 101–105. [Google Scholar] [CrossRef]
- Juris, M.; Velden, M. The pupillary response to mental overload. Physiol. Psychol. 1977, 5, 421–424. [Google Scholar] [CrossRef]
- Beatty, J. Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 1982, 91, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Hoeks, B.; Levelt, W.J.M. Pupillary dilation as a measure of attention: A quantitative system analysis. Behav. Res. Methods Instrum. Comput. 1993, 25, 16–26. [Google Scholar] [CrossRef]
- Nakayama, M.; Takahashi, K.; Shimizu, Y. The act of task difficulty and eye-movement frequency for the “Oculo-motor indices.”. In Proceedings of the Symposium on Eye Tracking Research & Applications—ETRA ’02, New Orleans, Louisiana, 25–27 March 2002; ACM Press: New York, NY, USA, 2002; pp. 37–42. [Google Scholar]
- Li, G.; Lee, B.L.; Chung, W.Y. Smartwatch-Based Wearable EEG System for Driver Drowsiness Detection. IEEE Sens. J. 2015, 15, 7169–7180. [Google Scholar] [CrossRef]
- Brockmeier, A.J.; Principe, J.C. Learning Recurrent Waveforms within EEGs. IEEE Trans. Biomed. Eng. 2016, 63, 43–54. [Google Scholar] [CrossRef] [PubMed]
- SmartCap Technologies. Available online: https://www.smartcaptech.com/ (accessed on 2 December 2017).
- Oulasvirta, A.; Tamminen, S.; Roto, V.; Kuorelahti, J. Interaction in 4-Second Bursts: The Fragmented Nature of Attentional Resources in Mobile HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’05, Portland, OR, USA, 2–7 April 2005; pp. 919–928. [Google Scholar]
- Fawcett, J.M.; Risko, E.F.; Kingstone, A. The Handbook of Attention; MIT Press: Cambridge, MA, USA, 2015; ISBN 9780262029698. [Google Scholar]
- Navon, D.; Gopher, D. On the economy of the human-processing system. Psychol. Rev. 1979, 86, 214–255. [Google Scholar] [CrossRef]
- Matthews, G.; Warm, J.S.; Smith, A.P. Task Engagement and Attentional Resources. Hum. Factors J. Hum. Factors Ergon. Soc. 2017, 59, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Oulasvirta, A. Predicting Time-Sharing in Mobile Interaction; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Jimenez-Molina, A.; Ko, I.-Y. Cognitive resource-aware unobtrusive service provisioning in ambient intelligence environments. J. Ambient Intell. Smart Environ. 2015, 7, 37–57. [Google Scholar]
- Sweller, J. Cognitive Load during Problem Solving: Effects on Learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Norman, D.A.; Draper, S.W. User Centered System Design New Perspectives on Human-Computer Interaction Library of Congress Cataloging-in-Publication Data; Taylor & Francis: Didcot, UK, 1986; ISBN 0-89859-872-9. [Google Scholar]
- Monk, C.A.; Boehm-Davis, D.A.; Trafton, J.G. The Attentional Costs of Interrupting Task Performance at Various Stages. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2002, 46, 1824–1828. [Google Scholar] [CrossRef]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.; Reinerman-Jones, L.E.; Barber, D.J.; Abich, J. The Psychometrics of Mental Workload: Multiple Measures Are Sensitive but Divergent. Hum. Factors J. Hum. Factors Ergon. Soc. 2015, 57, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Valenza, G.; Scilingo, E.P. Emotions and Mood States: Modeling, Elicitation, and Recognition. In Advances in Electrodermal Activity Processing with Applications for Mental Health; Springer International Publishing: Cham, Switzerland, 2016; pp. 45–54. [Google Scholar]
- Guastello, S.J.; Shircel, A.; Malon, M.; Timm, P. Individual differences in the experience of cognitive workload. Theor. Issues Ergon. Sci. 2015, 16, 20–52. [Google Scholar] [CrossRef]
- Dhami, M.K.; Hertwig, R.; Hoffrage, U. The Role of Representative Design in an Ecological Approach to Cognition. Psychol. Bull. 2004, 130, 959–988. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- Halverson, T.; Estepp, J.; Christensen, J.; Monnin, J. Classifying Workload with Eye Movements in a Complex Task. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2012, 56, 168–172. [Google Scholar] [CrossRef]
- Mehler, B.; Reimer, B.; Coughlin, J.F. Sensitivity of Physiological Measures for Detecting Systematic Variations in Cognitive Demand from a Working Memory Task. Hum. Factors 2012, 54, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gwizdka, J.; Chaovalitwongse, W.A. Using Wireless EEG Signals to Assess Memory Workload in the n-Back Task. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 424–435. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Tassinary, L.G.; Berntson, G. The Handbook of Psychophysiology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Walsh, E.G.; Marshall, J. Physiology of the Nervous System; Longmans: London, UK, 1957. [Google Scholar]
- Mohino-Herranz, I.; Gil-Pita, R.; Ferreira, J.; Rosa-Zurera, M.; Seoane, F. Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones. Sensors 2015, 15, 25607–25627. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, M.; Valenza, G.; Cristea, I.A.; Gentili, C.; Cotet, C.; David, D.; Lanata, A.; Scilingo, E.P. Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics. Front. Comput. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Banaee, H.; Ahmed, M.; Loutfi, A. Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges. Sensors 2013, 13, 17472–17500. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.H.; Wichansky, A.M. Eye Tracking in Usability Evaluation. In The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research; Hyona, J., Radach, R., Deubel, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 493–516. ISBN 9780444510204. [Google Scholar]
- Kuipers, J.-R.; Thierry, G. ERP-pupil size correlations reveal how bilingualism enhances cognitive flexibility. Cortex 2013, 49, 2853–2860. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, S.R.; Siegle, G.J.; Condray, R.; Pless, M. Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. Int. J. Psychophysiol. 2004, 52, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; Lucero-Wagoner, B. The Pupilary System. In Handbook of Psychophysiology, 2nd ed.; Cambridge University Press: New York, NY, USA, 2000; pp. 142–162. [Google Scholar]
- Zhou, J.; Sun, J.; Chen, F.; Wang, Y.; Taib, R.; Khawaji, A.; Li, Z. Measurable Decision Making with GSR and Pupillary Analysis for Intelligent User Interface. ACM Trans. Comput. Interact. 2015, 21, 1–23. [Google Scholar] [CrossRef]
- Antonenko, P.; Paas, F.; Grabner, R.; van Gog, T. Using Electroencephalography to Measure Cognitive Load. Educ. Psychol. Rev. 2010, 22, 425–438. [Google Scholar] [CrossRef]
- Roy, R.N.; Bonnet, S.; Charbonnier, S.; Campagne, A. Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Zarjam, P.; Epps, J.; Lovell, N.H. Beyond Subjective Self-Rating: EEG Signal Classification of Cognitive Workload. IEEE Trans. Auton. Ment. Dev. 2015, 7, 301–310. [Google Scholar] [CrossRef]
- Amin, H.U.; Malik, A.S.; Ahmad, R.F.; Badruddin, N.; Kamel, N.; Hussain, M.; Chooi, W.-T. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas. Phys. Eng. Sci. Med. 2015, 38, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zhiwei, L.; Minfen, S. Classification of Mental Task EEG Signals Using Wavelet Packet Entropy and SVM. In Proceedings of the 8th International Conference on Electronic Measurement and Instruments, Xi’an, China, 16–18 August 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Ahmad, R.F.; Malik, A.S.; Amin, H.U.; Kamel, N.; Reza, F. Classification of cognitive and resting states of the brain using EEG features. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- iMotions Biometric Research Platform. Eye Tracking Pocket Guide; iMotions Biometric Research Platform: Boston, MA, USA, 2016. [Google Scholar]
- Andreassi, J.L. Sychophysiology: Human Behaviour and Physiological Response; Lawrence Erlbaum: Mahwah, NJ, USA, 2000. [Google Scholar]
- Brioschi, M.L.; de Siqueira, J.T.T.; Teixeira, M.J. Avanços da imagem infravermelha na disfunção temporomandibular. JBA J. Bras. Oclusão ATM Dor Orofac. 2006, 6, 34–41. [Google Scholar]
- Genno, H.; Ishikawa, K.; Kanbara, O.; Kikumoto, M.; Fujiwara, Y.; Suzuki, R.; Osumi, M. Using facial skin temperature to objectively evaluate sensations. Int. J. Ind. Ergon. 1997, 19, 161–171. [Google Scholar] [CrossRef]
- Latorella, K.A. Effects of Modality on Interrupted Flight Deck Performance: Implications for Data Link. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1998, 42, 87–91. [Google Scholar] [CrossRef]
- Speier, C.; Valacich, J.S.; Vessey, I. The Influence of Task Interruption on Individual Decision Making: An Information Overload Perspective. Decis. Sci. 1999, 30, 337–360. [Google Scholar] [CrossRef]
- Zijlstra, F.R.H.; Roe, R.A.; Leonora, A.B.; Krediet, I. Temporal factors in mental work: Effects of interrupted activities. J. Occup. Organ. Psychol. 1999, 72, 163–185. [Google Scholar] [CrossRef]
- Adamczyk, P.D.; Bailey, B.P. If not now, when? In Proceedings of the 2004 Conference on Human Factors in Computing Systems—CHI ’04, Vienna, Austria, 24–29 April 2004; ACM Press: New York, NY, USA, 2004; pp. 271–278. [Google Scholar]
- Bailey, B.P.; Konstan, J.A. On the need for attention-aware systems: Measuring effects of interruption on task performance, error rate, and affective state. Comput. Hum. Behav. 2006, 22, 685–708. [Google Scholar] [CrossRef]
- Miyata, Y.; Norman, D. Psychological Issues in Support of Multiple Activities; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1986; pp. 265–284. [Google Scholar]
- Yoshida, Y.; Ohwada, H.; Mizoguchi, F.; Iwasaki, H. Classifying Cognitive Load and Driving Situation with Machine Learning. Int. J. Mach. Learn. Comput. 2014, 4, 210–215. [Google Scholar] [CrossRef]
- Shi, Y.; Ruiz, N.; Taib, R.; Choi, E.; Chen, F. Galvanic Skin Response (GSR) as an Index of Cognitive Load. In Proceedings of the CHI ’07 Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 28 April–3 May 2007. [Google Scholar]
- Nourbakhsh, N.; Wang, Y.; Chen, F.; Calvo, R.A. Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In Proceedings of the 24th Australian Computer-Human Interaction Conference on—OzCHI ’12, Melbourne, Australia, 26–30 November 2012; ACM Press: New York, NY, USA, 2012; pp. 420–423. [Google Scholar]
- Xu, J.; Wang, Y.; Chen, F.; Choi, E. Pupillary Response Based Cognitive Workload Measurement under Luminance Changes. In Proceedings of the IFIP Conference on Human-Computer Interaction, Lisbon, Portugal, 5–9 September 2011; Springer: Heidelberg, Germany, 2011; Volume 6947, pp. 178–185. [Google Scholar]
- Navalpakkam, V.; Churchill, E. Mouse Tracking: Measuring and Predicting Users’ Experience of Web-based Content. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems—CHI ’12, Austin, TX, USA, 5–10 May 2012; ACM Press: New York, NY, USA, 2012; pp. 2963–2972. [Google Scholar]
- Wearable Sensor Technology. Available online: https://www.shimmersensing.com/ (accessed on 2 December 2017).
- BITalino—Biomedical Equipment. Available online: http://bitalino.com/en/ (accessed on 2 December 2017).
- Emotiv. Available online: https://www.emotiv.com/ (accessed on 2 December 2017).
- Eye Tracking Technology for Research—Tobii Pro. Available online: https://www.tobiipro.com/ (accessed on 2 December 2017).
- Villarejo, M.V.; Zapirain, B.G.; Zorrilla, A.M. A Stress Sensor Based on Galvanic Skin Response (GSR) Controlled by ZigBee. Sensors 2012, 12, 6075–6101. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; He, W.; Cheng, Y.; Huang, W.; Zhang, Z. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts. Sensors 2017, 17, 385. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.V.; Geselowitz, D.B. The Theoretical Basis of Electrocardiology; Oxford University Press: Oxford, UK, 1976; Volume 1, ISBN 019857374X. [Google Scholar]
- Macfarlane, P.W.; Lawrie, T.D.V. Comprehensive Electrocardiology: Theory and Practice in Health and Disease; Pergamon Press: Oxford, UK, 1989; Volume 2. [Google Scholar]
- OpenSignals | Data Visualization Software | Bitalino. Available online: http://bitalino.com/en/software/ (accessed on 2 December 2017).
- Tobii Pro Studio Eye Tracking Software, Dedicated for UX. Available online: https://www.tobiipro.com/product-listing/tobii-pro-studio/ (accessed on 2 December 2017).
- Ward, R.D.; Marsden, P.H. Physiological responses to different WEB page designs. Int. J. Hum.-Comput. Stud. 2003, 59, 199–212. [Google Scholar] [CrossRef]
- Parsons, H.M. What Happened at Hawthorne? New evidence suggests the Hawthorne effect resulted from operant reinforcement contingencies. Science 1974, 183, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Loyola, P.; Martinez, G.; Muñoz, K.; Velásquez, J.D.; Maldonado, P.; Couve, A. Combining eye tracking and pupillary dilation analysis to identify Website Key Objects. Neurocomputing 2015, 168, 179–189. [Google Scholar] [CrossRef]
- Van Gerven, P.W.M.; Paas, F.; Van Merrienboer, J.J.G.; Schmidt, H.G. Memory load and the cognitive pupillary response in aging. Psychophysiology 2004, 41, 167–174. [Google Scholar] [CrossRef] [PubMed]
- iMotions Biometric Research Platform. GSR Pocket Guide; iMotions Biometric Research Platform: Boston, MA, USA, 2016. [Google Scholar]
- Li, X.; Chen, X.; Yan, Y.; Wei, W.; Wang, Z. Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine. Sensors 2014, 14, 12784–12802. [Google Scholar] [CrossRef] [PubMed]
- Fauvel, S.; Ward, R. An Energy Efficient Compressed Sensing Framework for the Compression of Electroencephalogram Signals. Sensors 2014, 14, 1474–1496. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Rincón, A. Preprocesamiento de EEG con Filtros Hampel. In Proceedings of the ARGENCON 2012—IEEE Latin American Transactions, Córdoba, Argentina, 13–15 June 2012. [Google Scholar]
- Guyon, I.; Elisseeff, A. An Introduction to Feature Extraction. In Feature Extraction; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–25. [Google Scholar]
- Betella, A.; Zucca, R.; Cetnarski, R.; Greco, A.; LanatÃ, A.; Mazzei, D.; Tognetti, A.; Arsiwalla, X.D.; Omedas, P.; De Rossi, D.; et al. Inference of human affective states from psychophysiological measurements extracted under ecologically valid conditions. Front. Neurosci. 2014, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- iMotions Biometric Research Platform. EEG Pocket Guide; iMotions Biometric Research Platform: Boston, MA, USA, 2016. [Google Scholar]
- Cohen, M.X. Analyzing Neutral Time Series Data. Theory and Practice; Massachusetts Institute of Technology: Cambridge, MA, USA, 2014. [Google Scholar]
- Xu, R.; Wunsch, D.C., II. Clustering; IEEE Press: Piscataway, NJ, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 263–278. [Google Scholar]
- Zumel, N.; Mount, J. Practical Data Science with R, 1st ed.; Manning Publications Co.: Shelter Island, NY, USA, 2014. [Google Scholar]
- Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- Shen, K.-Q.; Ong, C.-J.; Li, X.-P.; Hui, Z.; Wilder-Smith, E.P. A Feature Selection Method for Multilevel Mental Fatigue EEG Classification. IEEE Trans. Biomed. Eng. 2007, 54, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving Neural Networks by Preventing co-Adaptation of Feature Detectors. ArXiv e-prints 2012, arXiv:1207.0580. [Google Scholar]
- Candel, A.; Lanford, J.; LeDell, E.; Parmar, V.; Arora, A. Deep Learning with H2O, 3rd ed.; H2O.ai, Inc.: Mountain View, CA, USA, 2015. [Google Scholar]
Reference | Small Time Windows | Real Time | Web Browsing Tasks | Multiple Psychophysiological Sensors |
---|---|---|---|---|
[15] | Partially. Time window of 23.7 s. | Yes | No. Desktop-based tasks. | Yes. Eye tracker, EEG, ECG, heat flux and HR. |
[14] | Partially. Time windows between 5 s and 60 s. | Yes | No. Coding tasks. | Yes. Eye tracker and EEG. |
[34,37] | Partially. Time windows of 30 s. | Yes | No. Arithmetic tasks | Yes. EDA and blink. |
[16] | No. Time windows between 60 s and 70 s. | Yes | No. Arithmetic tasks | Yes. Eye tracker, EDA, pulse-oximeter, mouse pressure sensor. |
[17] | No. Time windows of 2 min. | Yes | No. N-back task. | Yes. EEG, EDA, respiration, ECG, eye tracker. |
[18] | Yes. Time windows of 550 ms. | Yes | Partially. Choosing a route, correcting spelling and classifying emails tasks. | No. Only pupillary dilation. |
[3] | Not applicable. | No | Yes | No. Measurement of mental workload by tapping test. |
[36] | No. Time windows between 100 s and 120 s. | Yes | Yes | No. Only eye tracking. |
[38] | Yes. Time windows between 300 ms and 600 ms. | Yes | Yes | No. Only pupillary dilation. |
Signals | Extracted Features |
---|---|
Pupil | mean of area |
EDA | Accumulated data, average as a function of time and spectral power |
Phasic | Average, absolute value of the maximum, number of peaks |
ECG | Mean, median, variance of ECGMAD (average absolute deviation) |
PPG(HR) | Mean, standard deviation, RMS of HR |
T | Mean, median |
EEG | Power and phase of the analytical signal obtained with the Transf. of Hilbert |
Signal | Selected features |
---|---|
EDA | Accumulated data Spectral power |
Temperature | Mean |
PPG | Mean HR Root Mean Square (RMS) of HR |
EEG | Power channel 5(T7) Power channel 9(P8) Power channel 11(FC6) Power channel 12(F4) |
Factor | Mean | Standard Deviation |
---|---|---|
Transition | −0.0201 | 0.951 |
Active | 0.0629 | 1.115 |
Model | Accuracy (%) | Recall (%) | Precision (%) | Kappa (%) |
---|---|---|---|---|
m-LR | 51.42 | 48.71 | 46.86 | 5.92 |
m-SVM | 66.48 | 63.21 | 66.71 | 57.49 |
m-SVM + RFE | 70.03 | 65.99 | 68.79 | 65.14 |
MLP | 93.7 | 95.28 | 92.06 | 91.24 |
Sensors | Accuracy (%) | Recall (%) | Precision (%) | Kappa (%) |
---|---|---|---|---|
All | 93.7 | 95.28 | 92.06 | 91.24 |
EDA | 35.7 | 41.5 | 26.62 | 2.31 |
T | 35.66 | 21.27 | 25.02 | 0.04 |
ECG | 34.75 | 26.48 | 25.39 | 0.617 |
PPG | 34.71 | 20.70 | 25.13 | 0.3 |
EEG | 70.91 | 82.03 | 65.09 | 58.36 |
EDA + PPG | 37.11 | 54.48 | 28.39 | 5.23 |
EDA + EEG | 80.95 | 87.34 | 77.23 | 73.07 |
PPG + EEG | 77.72 | 85.49 | 72.9 | 68.36 |
EDA + PPG + EEG | 86.27 | 90.4 | 83.65 | 80.72 |
Model and Sensor Combination | Mean [sec] | Standard Deviation [sec] |
---|---|---|
m-LR | 0.00073 | 0.0010 |
m-SVM | 0.00668 | 0.0025 |
M-SVM + RFE | 0.00124 | 0.0048 |
MLP | 1.47667 | 0.6091 |
MLP EEG | 1.12334 | 0.0057 |
MLP EDA + PPG | 1.10667 | 0.0057 |
MLP EDA + EEG | 1.14667 | 0.0115 |
MLP PPG + EEG | 1.13667 | 0.0057 |
MLP EDA + PPG + EEG | 1.11667 | 0.0115 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Molina, A.; Retamal, C.; Lira, H. Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing. Sensors 2018, 18, 458. https://doi.org/10.3390/s18020458
Jimenez-Molina A, Retamal C, Lira H. Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing. Sensors. 2018; 18(2):458. https://doi.org/10.3390/s18020458
Chicago/Turabian StyleJimenez-Molina, Angel, Cristian Retamal, and Hernan Lira. 2018. "Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing" Sensors 18, no. 2: 458. https://doi.org/10.3390/s18020458
APA StyleJimenez-Molina, A., Retamal, C., & Lira, H. (2018). Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing. Sensors, 18(2), 458. https://doi.org/10.3390/s18020458