Intracranial Pressure Monitoring—Review and Avenues for Development
Abstract
:1. Introduction
2. Invasive ICP Monitoring
3. Approaches to Improving Utility of Invasive ICP Monitoring
3.1. Cerebral Compliance and ICP Waveform Analysis
3.2. Autoregulation
3.3. Brain Oxygenation
4. Non-Invasive ICP Monitoring
4.1. Transcranial Doppler (TCD)
4.2. Optic Nerve Sheath Diameter (ONSD)
4.3. Imaging-Based Methods
4.4. Telemetric Sensors
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Monro, A. Observations on the Structure and Functions of the Nervous System; Creech and Johnson: Edinbourgh, UK, 1783. [Google Scholar]
- Kellie, G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans. Med.-Chir. Soc. Edinbrugh 1824, 1, 84. [Google Scholar]
- Cushing, H. The Third Circulation in Studies in Intracranial Physiology and Surgery; Oxford University Press: London, UK, 1926. [Google Scholar]
- Greenberg, M. (Ed.) Neuromonitoring. In Handbook of Neurosurgery, 8th ed.; Thieme: New York, NY, USA, 2016; pp. 856–881. [Google Scholar]
- Leffert, L.R.; Schwamm, L.H. Neuraxial anesthesia in parturients with intracranial pathology: A comprehensive review and reassessment of risk. Anesthesiology 2013, 119, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.; Ellenbogen, R. Intracranial hypertension. In Principles of Neurological Surgery, 3rd ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2012; pp. 311–323. [Google Scholar]
- Donnelly, J.; Budohoski, K.P.; Smielewski, P.; Czosnyka, M. Regulation of the cerebral circulation: Bedside assessment and clinical implications. Crit. Care 2016, 20, 129. [Google Scholar] [CrossRef] [PubMed]
- Cavus, E.; Bein, B.; Dörges, V.; Stadlbauer, K.-H.; Wenzel, V.; Steinfath, M.; Hanss, R.; Scholz, J. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation. Resuscitation 2006, 71, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Bowton, D.L.; Bertels, N.H.; Prough, D.S.; Stump, D.A. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit. Care Med. 1989, 17, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand. Suppl. 1960, 36, 1–193. [Google Scholar] [CrossRef] [PubMed]
- Czosnyka, M. Monitoring and interpretation of intracranial pressure. J. Neurol. Neurosur. Psychiatry 2004, 75, 813–821. [Google Scholar] [CrossRef]
- Kukreti, V.; Mohseni-Bod, H.; Drake, J. Management of raised intracranial pressure in children with traumatic brain injury. J. Pediatric Neurosci. 2014, 9, 207–215. [Google Scholar]
- Gilland, O. Normal cerebrospinal-fluid pressure. N. Engl. J. Med. 1969, 280, 904–905. [Google Scholar] [CrossRef] [PubMed]
- Gilland, O.; Tourtellotte, W.W.; O'Tauma, L.; Henderson, W.G. Normal cerebrospinal fluid pressure. J. Neurosurg. 1974, 40, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Smith, M. Monitoring intracranial pressure in traumatic brain injury. Anesth. Analg. 2008, 106, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Carney, N.; Totten, A.M.; O'Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurg. 2017, 80, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Treggiari, M.M.; Schutz, N.; Yanez, N.D.; Romand, J.-A. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: A systematic review. Neurocriti. Care 2007, 6, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Czosnyka, M.; Citerio, G. Brain compliance: The old story with a new ‘et cetera’. Intens. Care Med. 2012, 38, 925–927. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Gelb, A.W. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology 2015, 122, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K. Traumatic brain injury: Pathophysiology for neurocritical care. J. Intens. Care 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.M.; O’Neill, B.R.; Jho, D.; Whiting, D.M.; Oh, M.Y. The history of external ventricular drainage. J. Neurosurg. 2014, 120, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Aschoff, A.; Kremer, P.; Hashemi, B.; Kunze, S. The scientific history of hydrocephalus and its treatment. Neurosurg. Rev. 1999, 22, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Adson, A.W.; Lillie, W.I. The relationship of intracranial pressure, choked disc, and intraocular tension. Trans. Am. Acad. Opthalmol. 1927, 138–145. [Google Scholar]
- Padayachy, L.C.; Figaji, A.A.; Bullock, M.R. Intracranial pressure monitoring for traumatic brain injury in the modern era. Childs Nerv. Syst. 2010, 26, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Binz, D.D.; Toussaint, L.G.; Friedman, J.A. Hemorrhagic complications of ventriculostomy placement: A meta-analysis. Neurocrit. Care 2009, 10, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.F.; Razdan, S.N.; Bartolucci, A.A.; Markert, J.M. Meta-analysis of hemorrhagic complications from ventriculostomy placement by neurosurgeons. Neurosurgery 2011, 69, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Kawoos, U.; McCarron, R.M.; Auker, C.R.; Chavko, M. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int. J. Mol. Sci. 2015, 16, 28979–28997. [Google Scholar] [CrossRef] [PubMed]
- Vries, J.K.; Becker, D.P.; Young, H.F. A subarachnoid screw for monitoring intracranial pressure Technical note. J. Neurosurg. 1973, 39, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Bekar, A.; Doğan, S.; Abaş, F.; Caner, B.; Korfali, G.; Kocaeli, H.; Yilmazlar, S.; Korfali, E. Risk factors and complications of intracranial pressure monitoring with a fiberoptic device. J. Clin. Neurosci. 2009, 16, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Medow, J.E.; Iskandar, B.J.; Wang, F.; Shokoueinejad, M.; Koueik, J.; Webster, J.G. Invasive and noninvasive means of measuring intracranial pressure: A review. Physiol. Meas. 2017, 38, 143–182. [Google Scholar] [CrossRef] [PubMed]
- Raboel, P.H.; Bartek, J.; Andresen, M.; Bellander, B.M.; Romner, B. Intracranial pressure monitoring: Invasive versus non-invasive methods-a review. Critical Care Res. Pract. 2012, 2012, 950393. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.K.; Meyer, F.B. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin. Proc. 1990, 65, 684–707. [Google Scholar] [CrossRef]
- Gerber, L.M.; Chiu, Y.L.; Carney, N.; Hartl, R.; Ghajar, J. Marked reduction in mortality in patients with severe traumatic brain injury. J. Neurosurg. 2013, 119, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Alali, A.S.; Fowler, R.A.; Mainprize, T.G.; Scales, D.C.; Kiss, A.; de Mestral, C.; Ray, J.G.; Nathens, A.B. Intracranial pressure monitoring in severe traumatic brain injury: Results from the american college of surgeons trauma quality improvement program. J. Neurotraum. 2013, 30, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.C.; Georgoff, P.; Meghan, S.; Mirza, K.L.; El Falaky, O.M. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J. Neurosurg. 2010, 112, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Farahvar, A.; Gerber, L.M.; Chiu, Y.L.; Carney, N.; Hartl, R.; Ghajar, J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J. Neurosurg. 2012, 117, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Dawes, A.J.; Sacks, G.D.; Cryer, H.G.; Gruen, J.P.; Preston, C.; Gorospe, D.; Cohen, M.; McArthur, D.L.; Russell, M.M.; Maggard-Gibbons, M.; et al. Intracranial pressure monitoring and inpatient mortality in severe traumatic brain injury: A propensity score-matched analysis. J. Trauma Acute Care 2015, 78, 492–501, discussion 501–492. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Feng, J.; Tang, Q.; Cao, J.; Wang, L.; Lei, J.; Mao, Q.; Gao, G.; Jiang, J. Intraventricular intracranial pressure monitoring improves the outcome of older adults with severe traumatic brain injury: An observational, prospective study. BMC Anesthesiol. 2016, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wang, Z.; Su, Z.; Qiu, S.; Xu, J.; Zhou, Y.; Yan, A.; Yin, R.; Lu, B.; Nie, X.; et al. Effects of intracranial pressure monitoring on mortality in patients with severe traumatic brain injury: A meta-analysis. PLoS ONE 2016, 11, e0168901. [Google Scholar] [CrossRef] [PubMed]
- Talving, P.; Karamanos, E.; Teixeira, P.G.; Skiada, D.; Lam, L.; Belzberg, H.; Inaba, K.; Demetriades, D. Intracranial pressure monitoring in severe head injury: Compliance with brain trauma foundation guidelines and effect on outcomes: A prospective study. J. Neurosurg. 2013, 119, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Lane, P.L.; Skoretz, T.G.; Doig, G.; Girotti, M.J. Intracranial pressure monitoring and outcomes after traumatic brain injury. Can. J. Surg. 2000, 43, 442–448. [Google Scholar] [PubMed]
- Tang, A.; Pandit, V.; Fennell, V.; Jones, T.; Joseph, B.; O'Keeffe, T.; Friese, R.S.; Rhee, P. Intracranial pressure monitor in patients with traumatic brain injury. J. Surg. Res. 2015, 194, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Aiolfi, A.; Benjamin, E.; Khor, D.; Inaba, K.; Lam, L.; Demetriades, D. Brain trauma foundation guidelines for intracranial pressure monitoring: Compliance and effect on outcome. World J. Surg. 2017, 41, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, A.; Lewis, M.; Benjamin, E.; Aiolfi, A.; Inaba, K.; Demetriades, D. Intracranial pressure monitoring in severe traumatic brain injuries: A closer look at level 1 trauma centers in the united states. Injury 2017, 48, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.; Aldawood, A.S.; Alferayan, A.; Russell, N.A.; Tamim, H.M.; Arabi, Y.M. Relationship between intracranial pressure monitoring and outcomes in severe traumatic brain injury patients. Anaesth. Intens. Care 2011, 39, 1043–1050. [Google Scholar]
- Shafi, S.; Diaz-Arrastia, R.; Madden, C.; Gentilello, L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J. Traum. 2008, 64, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Cremer, O.L.; van Dijk, G.W.; van Wensen, E.; Brekelmans, G.J.F.; Moons, K.G.M.; Leenen, L.P.H.; Kalkman, C.J. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit. Care Med. 2005, 33, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, R.M.; Temkin, N.; Carney, N.; Dikmen, S.; Rondina, C.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Barber, J.; et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N. Engl. J. Med. 2012, 367, 2471–2481. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, N.M.; Wang, J.Z.; Pasarikovski, C.R.; Guha, D.; Al-Mufti, F.; Mamdani, M.; Saposnik, G.; Schweizer, T.A.; Macdonald, R.L. Management of raised intracranial pressure in aneurysmal subarachnoid hemorrhage: Time for a consensus? Neurosurg. Focus. 2017, 43, 13. [Google Scholar] [CrossRef] [PubMed]
- Löfgren, J.; von Essen, C.; Zwetnow, N.N. The pressure–volume curve of the cerebrospinal fluid space in dogs. Acta Neurol. Scand. 1973, 49, 557–574. [Google Scholar] [CrossRef] [PubMed]
- Avezaat, C.J.; van Eijndhoven, J.H. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir. 1986, 79, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, H.D.; Chopp, M.; Branch, C.; Shannon, M.B. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J. Neurosurg. 1982, 56, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Sundstrøm, T.; Grände, P.-O.; Juul, N.; Kock-Jensen, C.; Romner, B.; Wester, K. Management of Severe Traumatic Brain Injury: Evidence, Tricks, and Pitfalls; Springer Science & Business Media: New York, NY, USA, 2012; p. 392. [Google Scholar]
- Kasprowicz, M.; Lalou, D.A.; Czosnyka, M.; Garnett, M.; Czosnyka, Z. Intracranial pressure, its components and cerebrospinal fluid pressure–volume compensation. Acta Neurol. Scand. 2016, 134, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; O’Kane, R. The best marker for guiding the clinical management of patients with raised intracranial pressure—the rap index or the mean pulse amplitude? Acta Neurochir. 2016, 158, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Spiegelberg, A.; Preuß, M.; Kurtcuoglu, V. B-waves revisited. Interdiscip. Neurosurg. 2016, 6, 13–17. [Google Scholar] [CrossRef]
- Lemaire, J.J.; Khalil, T.; Cervenansky, F.; Gindre, G.; Boire, J.Y.; Bazin, J.E.; Irthum, B.; Chazal, J. Slow pressure waves in the cranial enclosure. Acta Neurochir. 2002, 144, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Calviello, L.; Donnelly, J.; Cardim, D.; Robba, C.; Zeiler, F.A.; Smielewski, P.; Czosnyka, M. Compensatory-reserve-weighted intracranial pressure and its association with outcome after traumatic brain injury. Neurocrit. Care 2017, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Howells, T.; Lewen, A.; Skold, M.K.; Ronne-Engstrom, E.; Enblad, P. An evaluation of three measures of intracranial compliance in traumatic brain injury patients. Intens. Care Med. 2012, 38, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Mariak, Z.; Swiercz, M.; Krejza, J.; Lewko, J.; Lyson, T. Intracranial pressure processing with artificial neural networks: Classification of signal properties. Acta Neurochir. 2000, 142, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Swiercz, M.; Mariak, Z.; Krejza, J.; Lewko, J.; Szydlik, P. Intracranial pressure processing with artificial neural networks: Prediction of icp trends. Acta Neurochir. 2000, 142, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Azimi, P.; Mohammadi, H.R.; Benzel, E.C.; Shahzadi, S.; Azhari, S.; Montazeri, A. Artificial neural networks in neurosurgery. J. Neurol. Neurosur. Psychiatry 2015, 86, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.; Betrouni, N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, F.; Hamilton, R.; Asgari, S.; Kim, S.; Hu, X. Intracranial hypertension prediction using extremely randomized decision trees. Med. Eng. Phys. 2012, 34, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Di Ieva, A.; Schmitz, E.M.; Cusimano, M.D. Analysis of intracranial pressure: Past, present, and future. Neuroscientist 2013, 19, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Quachtran, B.; Hamilton, R.; Scalzo, F. Detection of Intracranial Hypertension using Deep Learning. In Proceedings of the Detection of Intracranial Hypertension Using Deep Learning, Cancun, Mexico, 4–8 December 2016; pp. 2491–2496. [Google Scholar]
- Guiza, F.; Depreitere, B.; Piper, I.; Citerio, G.; Jorens, P.G.; Maas, A.; Schuhmann, M.U.; Lo, T.M.; Donald, R.; Jones, P.; et al. Early detection of increased intracranial pressure episodes in traumatic brain injury: External validation in an adult and in a pediatric cohort. Crit. Care Med. 2017, 45, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Guiza, F.; Depreitere, B.; Piper, I.; Van den Berghe, G.; Meyfroidt, G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: Development and validation in a multicenter dataset. Crit. Care Med. 2013, 41, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Piper, I.; Citerio, G.; Chambers, I.; Contant, C.; Enblad, P.; Fiddes, H.; Howells, T.; Kiening, K.; Nilsson, P.; Yau, Y.H.; et al. The brainit group: Concept and core dataset definition. Acta Neurochir. 2003, 145, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.; Donnelly, J.; Czosnyka, M.; Kolias, A.G.; Helmy, A.; Menon, D.K.; Smielewski, P.; Hutchinson, P.J. Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study. PLoS Med. 2017, 14, e1002353. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, C.; DeSantis, S.M.; Smielewski, P.; Menon, D.K.; Hutchinson, P.; Pickard, J.D.; Czosnyka, M. Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J. Neurosurg. 2014, 120, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Czosnyka, M.; Smielewski, P.; Kirkpatrick, P.; Laing, R.J.; Menon, D.; Pickard, J.D. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 1997, 41, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Needham, E.; McFadyen, C.; Newcombe, V.; Synnot, A.J.; Czosnyka, M.; Menon, D. Cerebral perfusion pressure targets individualized to pressure-reactivity index in moderate to severe traumatic brain injury: A systematic review. J. Neurotraum. 2017, 34, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, F.A.; Donnelly, J.; Calviello, L.; Smielewski, P.; Menon, D.K.; Czosnyka, M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part ii: A scoping review of continuous methods. J. Neurotraum. 2017, 34, 3224–3237. [Google Scholar] [CrossRef] [PubMed]
- Vespa, P.M.; O'Phelan, K.; McArthur, D.; Miller, C.; Eliseo, M.; Hirt, D.; Glenn, T.; Hovda, D.A. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit. Care Med. 2007, 35, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.K.; Coles, J.P.; Gupta, A.K.; Fryer, T.D.; Smielewski, P.; Chatfield, D.A.; Aigbirhio, F.; Skepper, J.N.; Minhas, P.S.; Hutchinson, P.J.; et al. Diffusion limited oxygen delivery following head injury. Crit. Care med. 2004, 32, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Shutter, L.A.; Moore, C.; Temkin, N.R.; Puccio, A.M.; Madden, C.J.; Andaluz, N.; Chesnut, R.M.; Bullock, M.R.; Grant, G.A.; et al. Brain oxygen optimization in severe traumatic brain injury phase-ii: A phase ii randomized trial. Crit. Care Med. 2017, 45, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.J.; Su, Z.; Clancy, M.T.; Lucas, S.J.E.; Dehghani, H.; Logan, A.; Belli, A. Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review. J. Neurotraum. 2015, 32, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Weerakkody, R.A.; Czosnyka, M.; Zweifel, C.; Castellani, G.; Smielewski, P.; Brady, K.; Pickard, J.D.; Czosnyka, Z. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic icp waves. Acta Neurochir. Suppl. 2012, 114, 181–185. [Google Scholar] [PubMed]
- Budohoski, K.P.; Zweifel, C.; Kasprowicz, M.; Sorrentino, E.; Diedler, J.; Brady, K.M.; Smielewski, P.; Menon, D.K.; Pickard, J.D.; Kirkpatrick, P.J.; et al. What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br. J. Anaesth. 2012, 108, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, J.; Dander, D.; Holzgraefe, M.; Bischoff, C.; Conrad, B. Cerebral vasospasm evaluated by transcranial doppler ultrasonography at different intracranial pressures. J. Neurosurg. 1991, 75, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Homburg, A.M.; Jakobsen, M.; Enevoldsen, E. Transcranial doppler recordings in raised intracranial pressure. Acta Neurol. Scand. 1993, 87, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Bellner, J.; Romner, B.; Reinstrup, P.; Kristiansson, K.-A.; Ryding, E.; Brandt, L. Transcranial doppler sonography pulsatility index (pi) reflects intracranial pressure (icp). Surg. Neurol. 2004, 62, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Cardim, D.; Robba, C.; Donnelly, J.; Bohdanowicz, M.; Schmidt, B.; Damian, M.; Varsos, G.V.; Liu, X.; Cabeleira, M.; Frigieri, G.; et al. Prospective study on noninvasive assessment of intracranial pressure in traumatic brain-injured patients: Comparison of four methods. J. Neurotraum. 2016, 33, 792–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, B.; Klingelhofer, J.; Md, J.; Schwarze, J.J.; Sander, D.; Wittich, I. Noninvasive prediction of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure curves. Stroke 1997, 28, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Rasulo, F.A.; Bertuetti, R.; Robba, C.; Lusenti, F.; Cantoni, A.; Bernini, M.; Girardini, A.; Calza, S.; Piva, S.; Fagoni, N.; et al. The accuracy of transcranial doppler in excluding intracranial hypertension following acute brain injury: A multicenter prospective pilot study. Crit. Care 2017, 21. [Google Scholar] [CrossRef] [PubMed]
- O'Brien, N.F.; Maa, T.; Reuter-Rice, K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J. Neurosurg. Pediatrics 2015, 16, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Willie, C.K.; Colino, F.L.; Bailey, D.M.; Tzeng, Y.C.; Binsted, G.; Jones, L.W.; Haykowsky, M.J.; Bellapart, J.; Ogoh, S.; Smith, K.J.; et al. Utility of transcranial doppler ultrasound for the integrative assessment of cerebrovascular function. J. Neurosci. Meth. 2011, 196, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.C.; Helmke, K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. SRA 1996, 18, 323–328. [Google Scholar] [PubMed]
- Maissan, I.M.; Dirven, P.J.A.C.; Haitsma, I.K.; Hoeks, S.E.; Gommers, D.; Stolker, R.J. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J. Neurosurg. 2015, 123, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Dubourg, J.; Javouhey, E.; Geeraerts, T.; Messerer, M.; Kassai, B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: A systematic review and meta-analysis. Intens. Care Med. 2011, 37, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.C.; Helmke, K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: Ultrasound findings during intrathecal infusion tests. J. Neurosurg. 1997, 87, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.P.; Lee, S.U.; Kim, S.-E.; Kang, S.H.; Yang, J.S.; Choi, H.J.; Cho, Y.J.; Ban, S.P.; Byoun, H.S.; Kim, Y.S. Correlation of optic nerve sheath diameter with directly measured intracranial pressure in korean adults using bedside ultrasonography. PLoS ONE 2017, 12, e0183170. [Google Scholar] [CrossRef] [PubMed]
- Ohle, R.; McIsaac, S.M.; Woo, M.Y.; Perry, J.J. Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: A systematic review and meta-analysis. J. Ultras. Med. 2015, 34, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Rajajee, V.; Vanaman, M.; Fletcher, J.J.; Jacobs, T.L. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit. Care 2011, 15, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, S.A.; O’Neill, G.; Hamilton, R.; Hollman, A.S. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur. J. Ultrasound. 2002, 15, 145–149. [Google Scholar] [CrossRef]
- Rajajee, V.; Fletcher, J.; Rochlen, L.; Jacobs, T. Comparison of accuracy of optic nerve ultrasound for the detection of intracranial hypertension in the setting of acutely fluctuating vs stable intracranial pressure: Post-hoc analysis of data from a prospective, blinded single center study. Crit. Care 2012, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.W.; Aleman, T.S.; Xu, W.; Ying, G.-S.; Pan, W.; Liu, G.T.; Lang, S.-S.; Heuer, G.G.; Storm, P.B.; Bartlett, S.P.; et al. Evaluation of optical coherence tomography to detect elevated intracranial pressure in children. JAMA Ophthalmol. 2017, 135, 320. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.; Carhuapoma, J.R.; Kreiter, K.T.; Du, E.Y.; Connolly, E.S.; Mayer, S.A. Global cerebral edema after subarachnoid hemorrhage: Frequency, predictors, and impact on outcome. Stroke 2002, 33, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Alperin, N.J.; Lee, S.H.; Loth, F.; Raksin, P.B.; Lichtor, T. Mr-intracranial pressure (icp): A method to measure intracranial elastance and pressure noninvasively by means of mr imaging: Baboon and human study. Radiology 2000, 217, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Pappu, S.; Lerma, J.; Khraishi, T. Brain ct to assess intracranial pressure in patients with traumatic brain injury: Ct to rule out elevated icp in tbi. J. Neuroimaging 2016, 26, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.T.; Pasquale, M.; Kurek, S.; White, J.; Martin, P.; Bannon, K.; Wasser, T.; Li, M. Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J. Trauma 2004, 56, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Antes, S.; Tschan, C.A.; Heckelmann, M.; Breuskin, D.; Oertel, J. Telemetric intracranial pressure monitoring with the raumedic neurovent p-tel. World Neurosurg. 2016, 91, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Behfar, M.H.; Abada, E.; Sydanheimo, L.; Goldman, K.; Fleischman, A.J.; Gupta, N.; Ukkonen, L.; Roy, S. Inductive passive sensor for intraparenchymal and intraventricular monitoring of intracranial pressure. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 Augest 2016; pp. 1950–1954. [Google Scholar]
- Barber, J.M.; Pringle, C.J.; Raffalli-Ebezant, H.; Pathmanaban, O.; Ramirez, R.; Kamaly-Asl, I.D. Telemetric intra-cranial pressure monitoring: Clinical and financial considerations. Br. J. Neurosurg. 2017, 31, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Freimann, F.B.; Schulz, M.; Haberl, H.; Thomale, U.-W. Feasibility of telemetric icp-guided valve adjustments for complex shunt therapy. Child. Nerv. Syst. 2014, 30, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Frischholz, M.; Sarmento, L.; Wenzel, M.; Aquilina, K.; Edwards, R.; Coakham, H.B. Telemetric Implantable Pressure Sensor for Short- and Long-Term Monitoring of Intracranial Pressure. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 Augest 2007; p. 514. [Google Scholar]
- Antes, S.; Stadie, A.; Müller, S.; Linsler, S.; Breuskin, D.; Oertel, J. Intracranial pressure-guided shunt valve adjustments with the miethke sensor reservoir. World Neurosurg. 2018, 109, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Kadowaki, C.; Konishi, Y.; Ogashiwa, M.; Numoto, M.; Takeuchi, K. A new method for measuring cerebrospinal fluid flow in shunts. J. Neurosurg. 1983, 58, 557–561. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harary, M.; Dolmans, R.G.F.; Gormley, W.B. Intracranial Pressure Monitoring—Review and Avenues for Development. Sensors 2018, 18, 465. https://doi.org/10.3390/s18020465
Harary M, Dolmans RGF, Gormley WB. Intracranial Pressure Monitoring—Review and Avenues for Development. Sensors. 2018; 18(2):465. https://doi.org/10.3390/s18020465
Chicago/Turabian StyleHarary, Maya, Rianne G. F. Dolmans, and William B. Gormley. 2018. "Intracranial Pressure Monitoring—Review and Avenues for Development" Sensors 18, no. 2: 465. https://doi.org/10.3390/s18020465
APA StyleHarary, M., Dolmans, R. G. F., & Gormley, W. B. (2018). Intracranial Pressure Monitoring—Review and Avenues for Development. Sensors, 18(2), 465. https://doi.org/10.3390/s18020465