Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments
2.3. Fabrication of Dual-Sensing Films in 96-Well Plates
2.4. Optimization of the Sensing Films
2.5. Thickness Measurements of the Sensing Hydrogels
2.6. Characterization of the Sensing Behaviors of the Hydrogels in 96-Well Plates
2.7. Photostability Test and Ionic Influences
2.8. pH Responses
2.9. Oxygen Responses
2.10. E. coli Culture
3. Results and Discussion
3.1. Sensor Preparation in Multi-Well Plates
3.2. Optimization of Sensing Hydrogels
3.3. Typical Oxygen Sensing for DO
3.4. pH Sensing
3.5. Biocompability Test of the Sensor Hydrogels in the Wells
3.6. In-Situ Monitoring of the pH and Oxygen Changes during the Growth of E. coli K12
3.7. Sensing Films for Antibiotic Test
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beal, M.F.; Hyman, B.T.; Koroshetz, W. Do defecs in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 1993, 16, 125–131. [Google Scholar] [CrossRef]
- Rosas, C.; Martinez, E.; Gaxiola, G.; Brito, R.; Sánchez, A.; Soto, L.A. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. J. Exp. Mar. Biol. Ecol. 1999, 234, 41–57. [Google Scholar] [CrossRef]
- Morrison, S.J.; Csete, M.; Groves, A.K.; Melega, W.; Wold, B.; Anderson, D.J. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 2000, 20, 7370–7376. [Google Scholar] [PubMed]
- Amon, R.; Benner, R. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim. Cosmochim. Acta 1996, 60, 1783–1792. [Google Scholar] [CrossRef]
- Bandyopadhyay, U.; Das, D.; Banerjee, R.K. Reactive oxygen species: Oxidative damage and pathogenesis. Curr. Sci. 1999, 77, 658–666. [Google Scholar]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Chen, F.; Cryns, V.L.; Messersmith, P.B. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc. 2011, 133, 11850–11853. [Google Scholar] [CrossRef] [PubMed]
- Hansen, G.; Johansen, C.L.; Wilmes, J.; Jespersen, L.; Arneborg, N. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of lactococcus lactis in batch fermentations. Appl. Microbiol. Biotechnol. 2016, 100, 5965–5976. [Google Scholar] [CrossRef] [PubMed]
- Hainaut, P.; Plymoth, A. Targeting the hallmarks of cancer: Towards a rational approach to next-generation cancer therapy. Curr. Opin. Oncol. 2013, 25, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Wolfbeis, O.S. Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [Google Scholar] [CrossRef] [PubMed]
- Wolfbeis, O.S. Materials for fluorescence-based optical chemical sensors. J. Mater. Chem. 2005, 15, 2657–2669. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2000, 72, 81–90. [Google Scholar] [CrossRef]
- Zou, X.; Pan, T.T.; Chen, L.; Tian, Y.Q.; Zhang, W.W. Luminescence materials for pH and oxygen sensing in microbial cells-structures, optical properties, and biological applications. Crit. Rev. Biotechnol. 2017, 37, 723–738. [Google Scholar] [CrossRef] [PubMed]
- Nagl, S.; Wolfbeis, O.S. Optical multiple chemical sensing: Status and current challenges. Analyst 2007, 132, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Vasylevska, G.S.; Borisov, S.M.; Krause, C.; Wolfbeis, O.S. Indicator-loaded permeation-selective microbeads for use in fiber optic simultaneous sensing of pH and dissolved oxygen. Chem. Mater. 2006, 18, 4609–4616. [Google Scholar] [CrossRef]
- Schröder, C.R.; Polerecky, L.; Klimant, I. Time-resolved pH/pO2 mapping with luminescent hybrid sensors. Anal. Chem. 2007, 79, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Kocincová, A.S.; Nagl, S.; Arain, S.; Krause, C.; Borisov, S.M.; Arnold, M.; Wolfbeis, O.S. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol. Bioeng. 2008, 100, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.G.; Jin, Y.G.; Tian, Y.Q.; Zhang, W.W.; Holl, M.R.; Meldrum, D.R. New ratiometric optical oxygen and pH dual sensors with three emission colors for measuring photosynthetic activity in cyanobacteria. J. Mater. Chem. 2011, 21, 19293–19301. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Stolwijk, J.A.; Lang, T.; Sperber, M.; Meier, R.J.; Wegener, J.; Wolfbeis, O.S. Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J. Am. Chem. Soc. 2012, 134, 17011–17014. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.J.; Schreml, S.; Wang, X.D.; Landthaler, M.; Babilas, P.; Wolfbeis, O.S. Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew. Chem. Int. Ed. 2011, 50, 10893–10896. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.F.; Su, F.Y.; Tian, Y.Q.; Meldrum, D.R. Dually fluorescent core-shell microgels for ratiometric imaging in live antigen-presenting cells. PLoS ONE 2014, 9, e88185. [Google Scholar] [CrossRef] [PubMed]
- Borchert, N.B.; Ponomarev, G.V.; Kerry, J.P.; Papkovsky, D.B. O2/pH multisensor based on one phosphorescent dye. Anal. Chem. 2011, 83, 18–22. [Google Scholar] [CrossRef] [PubMed]
- PreSens Precision Sensing. Available online: https://www.presens.de/ (accessed on 11 February 2018).
- Agilent Trusted Answers. Available online: http://cn.agilent.com/en-us/products/cell-analysis-(seahorse)/how-seahorse-xf-analyzers-work (accessed on 11 February 2018).
- Wang, X.D.; Meier, R.J.; Wolfbeis, O.S. Fluorescent pH-sensitive nanoparticles in an agarose matrix for imaging of bacterial growth and metabolism. Angew. Chem. Int. Ed. 2013, 52, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Birmele, M.; Roberts, M.; Garland, J. Characterization of methods for determining sterilization efficacy and reuse efficiency of oxygen biosensor multiwell plates. J. Microbiol. Meth. 2006, 67, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhong, Z.M.; Li, Z.; Jiang, Y.Q.; Wang, X.R.; Wong, K. Characterization of ormosil film for dissolved oxygen-sensing. Sens. Actuators B Chem. 2002, 87, 233–238. [Google Scholar] [CrossRef]
- Moßhammer, M.; Strobl, M.; Kühl, M.; Klimant, I.; Borisov, M.S.; Koren, K. Design and application of an optical sensor for simultaneous imaging of pH and dissolved O2 with low cross-talk. ACS Sens. 2016, 1, 681–687. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Su, F.Y.; Weber, W.; Nandakumar, V.; Shumway, B.R.; Jin, Y.G.; Zhou, X.F.; Holl, M.; Johnson, R.H.; Meldrum, D.R. A series of naphthalimide derivatives as intra and extracellular pH sensors. Biomaterials 2010, 31, 7411–7422. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.Q.; Shumway, B.R.; Gao, W.M.; Youngbull, C.; Holl, M.R.; Johnson, R.H.; Meldrum, D.R. Influence of matrices on oxygen sensing of three sensing films with chemically conjugated platinum porphyrin probes and preliminary application for monitoring of oxygen consumption of Escherichia coli (E. coli). Sens. Actuators B Chem. 2010, 150, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.Q.; Shumway, B.R.; Meldrum, D.R. A new cross-linkable oxygen sensor covalently bonded into poly(2-hydroxyethyl methacrylate)-co-polyacrylamide thin film for dissolved oxygen sensing. Chem. Mater. 2010, 22, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.Q.; Shumway, B.R.; Youngbull, A.C.; Li, Y.Z.; Jen, A.K.-Y.; Johnson, R.H.; Meldrum, D.R. Dually fluorescent sensing of pH and dissolved oxygen using a membrane made from polymerizable sensing monomers. Sens. Actuators B Chem. 2010, 147, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Sarac, A.S. Redox polymerization. Prog. Polym. Sci. 1999, 24, 1149–1204. [Google Scholar] [CrossRef]
- Fornasiero, F.; Krull, F.; Prausnitz, J.M.; Radke, C.J. Steady-state diffusion of water through soft-contact-lens materials. Biomaterials 2005, 26, 5704–5716. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, G.; Zhang, S.; Guang, Y. Influence of water states in hydrogels on the transmissibility and permeability of oxygen in contact lens materials. Appl. Surf. Sci. 2008, 255, 604–606. [Google Scholar] [CrossRef]
- O’Riordan, T.C.; Buckley, D.; Ogurtsov, V.; O’Connora, R.; Papkovsky, D.B. A cell viability assay based on monitoring respiration by optical oxygen sensing. Anal. Biochem. 2000, 278, 221–227. [Google Scholar] [CrossRef] [PubMed]
- West, I.C.; Mitchell, P. Proton/sodium ion antiport in Escherichia coli. Biochem. J. 1974, 144, 87–90. [Google Scholar] [CrossRef] [PubMed]
Films | HEMA a | AM a | PEGDMA in the Total Weight of HEMA and AM | Film-Forming | Sensitivity to DO b (I0/I100) | Sensitivity to Ph c (IpH9.0/IpH3.0) |
---|---|---|---|---|---|---|
F1 | 100 | 0 | 10 | yes | 5.73 | 17.3 |
F2 | 95 | 5 | 10 | yes | 5.95 | 18.0 |
F3 | 85 | 15 | 10 | yes | 5.83 | 21.4 |
F4 | 75 | 25 | 10 | yes | 1.54 | 11.3 |
F5 | 65 | 35 | 10 | no | - | - |
F6 | 85 | 15 | 2.5 | no | - | - |
F7 | 85 | 15 | 5.0 | yes | 4.28 | 17.6 |
F8 | 85 | 15 | 15 | yes | 3.39 | 22.3 |
F9 | 85 | 15 | 20 | yes | 2.31 | 24.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Wu, S.; Yi, Z.; Zeng, F.; Wu, W.; Qiao, Y.; Zhao, X.; Cheng, X.; Tian, Y. Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies. Sensors 2018, 18, 564. https://doi.org/10.3390/s18020564
Wu S, Wu S, Yi Z, Zeng F, Wu W, Qiao Y, Zhao X, Cheng X, Tian Y. Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies. Sensors. 2018; 18(2):564. https://doi.org/10.3390/s18020564
Chicago/Turabian StyleWu, Shanshan, Siying Wu, Zheyuan Yi, Fei Zeng, Weizhen Wu, Yuan Qiao, Xingzhong Zhao, Xing Cheng, and Yanqing Tian. 2018. "Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies" Sensors 18, no. 2: 564. https://doi.org/10.3390/s18020564
APA StyleWu, S., Wu, S., Yi, Z., Zeng, F., Wu, W., Qiao, Y., Zhao, X., Cheng, X., & Tian, Y. (2018). Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies. Sensors, 18(2), 564. https://doi.org/10.3390/s18020564