Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing
Abstract
:1. Introduction
2. Structure and Theoretical Optical Features of Rectangular–Miniature Hollow Glass Tubings
3. Experimental Results
3.1. Instrumental Configuration
3.2. Experimental Spectra
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fan, X.; White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 2011, 5, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.K.; Armani, A.M. Label-free biological and chemical sensors. Nanoscale 2010, 2, 1544–1559. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; Fan, X. On the performance quantification of resonant refractive index sensors. Opt. Express 2008, 117–127. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Gouveia, A.C.; Jorge, A.P.; Baldini, F. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Passaro, V.; Troia, B.; La Notte, M.; De Leonardis, F. Photonic Resonant Microcavities for Chemical and Biochemical Sensing. RSC Adv. 2012, 3, 25–44. [Google Scholar] [CrossRef]
- Lahoz, F.; Aas, M.; Mcgloin, D. A compact and portable optofluidic device for detection of liquid properties and label-free sensing. J. Phys. D. Appl. Phys. 2017, 50, 215103-1–215103-8. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Yang, H.; Li, G.; Chen, X.; Lu, W. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci. Rep. 2017, 10639-1–10639-8. [Google Scholar] [CrossRef]
- Hu, T.; Zhao, Y.; Song, A. Fiber optic SPR sensor for refractive index and temperature measurement based on MMF-FBG-MMF structure. Sensors Actuators B. Chem. 2016, 237, 521–525. [Google Scholar] [CrossRef]
- Yang, D.; Tian, H.; Ji, Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 2011, 19, 11709–11717. [Google Scholar] [CrossRef] [PubMed]
- Surdo, S.; Carpignano, F.; Strambini, L.M.; Merlo, S.; Barillaro, G. Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications. RSC Adv. 2014, 4, 51935–51941. [Google Scholar] [CrossRef]
- Mandal, S.; Goddard, J.M.; Erickson, D. A multiplexed optofluidic biomolecular sensor for low mass detection. Lab Chip 2009, 9, 2924–2932. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Salemink, H.W.M. Real-time dynamic sensing with an on-chip nanophotonic sensor. Opt. Express 2017, 25, 17201–17210. [Google Scholar] [CrossRef] [PubMed]
- Benelarbi, D.; Bouchemat, T.; Bouchemat, M. Study of photonic crystal microcavities coupled with waveguide for biosensing applications. Opt. Quantum Electron. 2017, 49, 347. [Google Scholar] [CrossRef]
- Wu, J.; Day, D.; Gu, M.; Wu, J.; Day, D.; Gu, M. A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Appl. Phys. Lett. 2008, 92, 71108-1–71108-3. [Google Scholar] [CrossRef]
- Kim, G.; Son, G.; Lee, H.; Kim, K.; Lee, S. Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers. Opt. Commun. 2008, 281, 4644–4647. [Google Scholar] [CrossRef]
- Claes, T.; Bogaerts, W.; Bienstman, P. Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 2010, 18, 22747–22761. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, X. Characterization of sensing capability of optofluidic ring resonator biosensors. Appl. Phys. Lett. 2010, 97, 11105. [Google Scholar] [CrossRef]
- Sun, A.; Wu, Z. A Hybrid LPG/CFBG for Highly Sensitive Refractive Index Measurements. Sensors 2012, 12, 7318–7325. [Google Scholar] [CrossRef] [PubMed]
- Chryssis, A.N.; Saini, S.S.; Lee, S.M.; Yi, H.; Bentley, W.E.; Dagenais, M. Detecting Hybridization of DNA by Highly Sensitive Grating Sensors. IEEE J. Quantum Electron. 2005, 11, 864–872. [Google Scholar] [CrossRef]
- Schroeder, K.; Ecke, W.; Mueller, R.; Willsch, R.; Andreev, A. A fibre Bragg grating refractometer. Meas. Sci. Technol. 2001, 12, 757–764. [Google Scholar] [CrossRef]
- Li, X.; Shao, Y.; Yu, Y.; Zhang, Y.; Wei, S. A Highly Sensitive Fiber-Optic Fabry—Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement. Sensors 2016, 16, 794. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, X.; Wang, C.; Peng, G.; Qi, Y. Liquid refractive index sensor based on a 2D 10-fold photonic quasicrystal. J. Phys. D. Appl. Phys. 2017, 50, 365102. [Google Scholar] [CrossRef]
- Sumetsky, M.; Windeler, R.S.; Dulashko, Y.; Fan, X. Optical liquid ring resonator sensor. Opt. Express 2007, 15, 14376–14381. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qu, S. Optical fiber Fabry—Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing. Appl. Opt. 2014, 53, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Berrettoni, C.; Trono, C.; Vignoli, V.; Baldini, F. Fibre Tip Sensor with Embedded FBG-LPG for Temperature and Refractive Index Determination by means of the Simple Measurement of the FBG Characteristics. J. Sens. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Carpignano, F.; Rigamonti, G.; Migliazza, T.; Merlo, S. Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurments. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 383–391. [Google Scholar] [CrossRef]
- Hammarström, B.; Evander, M.; Barbeau, H.; Bruzelius, M.; Larsson, J.; Laurell, T.; Nilsson, J. Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip 2010, 10, 2251–2257. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Forouzan, O.; Burns, J.M.; Shevkoplyas, S.S. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections. Lab Chip 2011, 11, 3231–3240. [Google Scholar] [CrossRef] [PubMed]
- Waghmare, P.R.; Mitra, S.K. A comprehensive theoretical model of capillary transport in rectangular microchannels. Microfluid. Nanofluidics 2011, 12, 53–63. [Google Scholar] [CrossRef]
- Tsuda, T.; Sweedler, J.V.; Zare, R.N. Rectangular capillaries for capillary zone electrophoresis. Anal. Chem. 1990, 62, 2149–2152. [Google Scholar] [CrossRef]
- Evander, M.; Tenje, M. Microfluidic PMMA interfaces for rectangular glass capillaries. J. Micromech. Microeng. 2014, 24, 27003. [Google Scholar] [CrossRef]
- Pires, N.M.M.; Dong, T.; Hanke, U.; Hoivik, N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors 2014, 14, 15458–15479. [Google Scholar] [CrossRef] [PubMed]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed.; Cambridge University Press: West Nyack, NY, USA, 1999; EAN: 9780521784498. [Google Scholar]
- Morrish, W.; West, P.; Orlando, N.; Klantsataya, E.; Gardner, K.; Lane, S.; Decorby, R.; François, A.; ALkiviathes, M. A Refractometric Micro-Sensor Using a Mirrored Capillary Resonator. Opt. Express 2016, 94, 21540–21551. [Google Scholar] [CrossRef] [PubMed]
- Gourley, P.L. Biocavity laser for high-speed cell and tumour biology. J. Phys. D. Appl. Phys. 2003, 36, R228–R239. [Google Scholar] [CrossRef]
- Tumolo, T.; Angnes, L.; Baptista, M.S. Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal. Biochem. 2004, 333, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Carpignano, F.; Rigamonti, G.; Merlo, S. Characterization of rectangular glass microcapillaries by low-coherence reflectometry. IEEE Photonics Technol. Lett. 2015, 27, 1064–1067. [Google Scholar] [CrossRef]
- Carpignano, F.; Rigamonti, G.; Mazzini, G.; Merlo, S. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries. Sensors 2016, 16, 1670. [Google Scholar] [CrossRef] [PubMed]
- Refractive index of SCHOTT-multiple purpose-BOROFLOAT33. Available online: https://refractiveindex.info/?shelf=glass&book=SCHOTT-multipurpose&page=BOROFLOAT33 (accessed on 20 November 2017).
- Rigamonti, G.; Guardamagna, M.; Bello, V.; Marconi, S.; Auricchio, F.; Merlo, S. Flow-through micro-capillary refractive index sensor based on T/R spectral shift monitoring. Biomed. Opt. Express 2017, 8, 4438–4453. [Google Scholar] [CrossRef] [PubMed]
Tubing 21-30-21 | Tubing 35-50-35 | |||||
---|---|---|---|---|---|---|
OT[µm] | Δλ[nm] | 1/λ[µm−1] | OT[µm] | Δλ[nm] | 1/λ[µm−1] | |
Wall (1) | 30.58 | 39.28 | 25.46 | 50.96 | 23.57 | 42.42 |
Channel (2) | 30.00 | 40.05 | 24.97 | 50.00 | 24.03 | 41.62 |
Channel w H2O (2) | 39.46 | 30.44 | 32.85 | 65.77 | 18.26 | 54.75 |
Wall+Channel (3) | 60.58 | 19.80 | 50.50 | 100.96 | 11.86 | 84.31 |
Wall+Channel w H2O (3) | 70.04 | 17.15 | 58.31 | 116.73 | 10.29 | 97.18 |
Whole device (4) | 91.16 | 13.18 | 75.88 | 151.93 | 7.91 | 126.47 |
Whole device w H2O (4) | 100.62 | 11.94 | 83.76 | 167.70 | 7.19 | 139.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigamonti, G.; Bello, V.; Merlo, S. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing. Sensors 2018, 18, 603. https://doi.org/10.3390/s18020603
Rigamonti G, Bello V, Merlo S. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing. Sensors. 2018; 18(2):603. https://doi.org/10.3390/s18020603
Chicago/Turabian StyleRigamonti, Giulia, Valentina Bello, and Sabina Merlo. 2018. "Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing" Sensors 18, no. 2: 603. https://doi.org/10.3390/s18020603
APA StyleRigamonti, G., Bello, V., & Merlo, S. (2018). Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing. Sensors, 18(2), 603. https://doi.org/10.3390/s18020603