Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO2/GO at Different Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Arrayed Flexible RuO2/GO Chloride Ion Sensor
2.3. Sensing Mechanism of the Chloride Sensor
2.4. Voltage-Time and Eelectrochemical Impedance Spectroscopy Measurement Systems
- The sensitivities were investigated from 1 × 10−5 M to 1 M NaCl solutions at room temperature (25 °C) with the V-T measuring system.
- The sensitivities were investigated from 1 × 10−5 M to 1 M NaCl solutions at different temperatures from 10 °C to 50 °C with the V-T measuring system.
- The electrochemical impedance analysis was used to measure and fit the values of Ret, Rs and Cdl from 1 × 10−5 M to 1 M NaCl solutions at room temperature (25 °C) with the EIS measuring system.
- The electrochemical impedance analysis was used to measure and fit the values of Ret, Rs and Cdl in the 1 M NaCl solution at different temperatures from 10 °C to 50 °C with the EIS measuring system.
- The response potential variations of 1 M NaCl solution were investigated over a longer period for different solution temperatures from 10 °C to 50 °C by the V-T measurement system.
3. Results and Discussion
3.1. Investigation of the Sensitivities for Different Solution Temperatures
3.2. Investigation of the Electrochemical Impedance Analysis for Different Solution Temperatures
3.3. Investigation of the Drift Effect at Different Solution Temperatures
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chiang, J.L.; Chou, J.C.; Chen, Y.C. Study of the pH-ISFET and EnFET for biosensor applications. J. Med. Biol. Eng. 2001, 21, 135–146. [Google Scholar]
- Chou, J.C.; Wang, Y.F.; Lin, J.S. Temperature effect of a-Si:H pH-ISFET. Sens. Actuators B Chem. 2000, 62, 92–96. [Google Scholar] [CrossRef]
- Chiang, J.L.; Jan, S.S.; Chou, J.C.; Chen, Y.C. Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sens. Actuators B Chem. 2001, 76, 624–628. [Google Scholar] [CrossRef]
- Chou, J.C.; Li, Y.S.; Chiang, J.L. Simulation of Ta2O5-gate ISFET temperature characteristics. Sens. Actuators B Chem. 2000, 71, 73–76. [Google Scholar] [CrossRef]
- Oh, S.H.; Park, C.G.; Park, C.P. Thermal stability of RuO2/Ru bilayer thin film in oxygen atmosphere. Thin Solid Films 2000, 359, 118–123. [Google Scholar] [CrossRef]
- Sardarinejad, A.; Maurya, D.K.; Alameh, K. The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor. Sens. Actuators A Phys. 2014, 214, 15–19. [Google Scholar] [CrossRef]
- Sardarinejad, A.; Maurya, D.K.; Khaled, M.; Alameh, K. Temperature effect on the performance of RuO2 thin-film pH sensor. Sens. Actuators A Phys. 2015, 233, 414–421. [Google Scholar] [CrossRef]
- Gostkiewicz, M.G.; Sophocleous, M.; Atkinson, J.K.; Breijo, E.G. Performance of miniaturised thick-film solid state pH sensors. Sens. Actuators A Phys. 2013, 202, 2–7. [Google Scholar] [CrossRef]
- Hong, D.Y.; Lee, H.W.; Chung, W.Y.; Chiang, J.L.; Cheng, C.Y. Study and fabrication on multi-array extended-gate field-effect transistor chloride ion sensitive sensor. J. Adv. Eng. 2010, 5, 289–297. [Google Scholar]
- Rothmaier, M.; Schaller, U.; Morf, W.E.; Pretsch, E. Response mechanism of anion-selective electrodes based on mercury organic compounds as ionophores. Anal. Chim. Acta 1996, 327, 17–28. [Google Scholar] [CrossRef]
- Cheng, J.F.; Chou, J.C.; Sun, T.P.; Hsiung, S.K.; Kao, H.L. Study on all-solid-state chloride sensor based on tin oxide/Indium tin oxide glass. Jpn. J. Appl. Phys. 2011, 50, 037001. [Google Scholar] [CrossRef]
- Bratov, A.; Abramova, N.; Domı́nguez, C. Investigation of chloride sensitive ISFETs with different membrane compositions suitable for medical applications. Anal. Chim. Acta 2004, 514, 99–106. [Google Scholar] [CrossRef]
- Chou, J.C.; Ye, G.C.; Wu, D.G.; Chen, C.C. Fabrication of the array chlorine ion sensor based on microfluidic device framework. Solid State Electron. 2012, 77, 87–92. [Google Scholar] [CrossRef]
- Tseng, S.C.; Wu, T.Y.; Chou, J.C.; Liao, Y.H.; Lai, C.H.; Chen, J.S.; Huang, M.S. Research of non-ideal effect and dynamic measurement of the flexible arrayed chlorine ion sensor. IEEE Sens. J. 2016, 16, 4683–4690. [Google Scholar] [CrossRef]
- Mahajan, R.K.; Kaur, R.; Tabassum, S.; Arjmand, F.; Mathur, S. Cu (II) complexes as receptor molecules for development of new chloride sensors. Electrochim. Acta 2016, 52, 408–414. [Google Scholar] [CrossRef]
- Garrido, J.B.; Martínez, M.J.A. Development of a wearable electrochemical sensor for voltammetric determination of chloride ions. Sens. Actuators B Chem. 2017, 240, 224–228. [Google Scholar] [CrossRef]
- Montemor, M.F.; Alves, J.H.; Simões, A.M.; Fernandes, J.C.S.; Lourenço, Z.; Costa, A.J.S.; Appleton, A.J.; Ferreira, M.G.S. Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures. Cem. Concr. Compos. 2006, 28, 233–236. [Google Scholar] [CrossRef]
- Trnkova, L.; Adam, V.; Hubalek, J.; Babula, P.; Kizek, R. Amperometric sensor for detection of chloride ions. Sensors 2008, 8, 5619–5636. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.; Patil, S.; Patil, S.; Patil, V. Monitoring of turbidity, pH & temperature of water based on GSM. IJREST 2015, 2, 16–21. [Google Scholar]
- Liu, J.; Liu, Z.; Barrow, C.J.; Yang, W. Molecularly engineered graphene surfaces for sensing applications: A review. Anal. Chim. Acta 2015, 859, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.B.; Valcárcel, M. Graphene quantum dots in analytical science. TrAC Trends Anal. Chem. 2015, 71, 93–133. [Google Scholar]
- Kochmann, S.; Hirsch, T.; Wolfbeis, O.S. Graphenes in chemical sensors and biosensors. TrAC Trends Anal. Chem. 2012, 39, 87–113. [Google Scholar] [CrossRef]
- Lawal, A.T. Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015, 131, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 89, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Zhou, M.; Guo, L. Electrochemical sensors and biosensors based on less aggregated graphene. Biosens. Bioelectron. 2017, 89, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Arduini, F. Graphene-based screen-printed electrochemical (bio) sensors and their applications: efforts and criticisms. Biosens. Bioelectron. 2017, 89, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, Z.Y.; Wang, H.H.; Huang, G.Q.; Li, M.M. Electrochemical sensor for isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials. Mater. Sci. Eng. C 2015, 57, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Jiang, H.; Mahal, N.K.; Weber, R.; Kumar, R.; Castellano, M.J.; Dong, L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B Chem. 2017, 239, 1289–1299. [Google Scholar] [CrossRef]
- Wu, T.Y.; Tseng, S.C.; Chou, J.C.; Liao, Y.H.; Lai, C.H.; Chen, J.S.; Huang, M.S.; Tseng, T.W. Research of sensing characteristic and dynamic measurement of the graphene oxide modified flexible arrayed RuO2 chlorine ion sensor. Mater. Res. Bull. 2018, 101, 155–161. [Google Scholar]
- Chou, J.C.; Yan, S.J.; Liao, Y.H.; Lai, C.H.; Chen, J.S.; Chen, H.Y.; Tseng, T.W.; Wu, T.Y. Characterization of flexible arrayed pH sensor based on nickel oxide films. IEEE Sens. J. 2018, 18, 605–612. [Google Scholar] [CrossRef]
- Melai, B.; Salvo, P.; Calisi, N.; Moni, L.; Bonini, A.; Paoletti, C.; Lomonaco, T.; Mollica, V.; Fuoco, R.; Di Francesco, F. A graphene oxide pH sensor for wound monitoring. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 1898–1901. [Google Scholar]
- Kim, T.Y.; Hong, S.A.; Yang, S. A Solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in pH sensor. Sensors 2015, 15, 6469–6482. [Google Scholar]
- Taniguchi, T.; Kurihara, S.; Tateishi, H.; Hatakeyama, K.; Koinuma, M.; Yokoi, H.; Hara, M.; Ishikawa, H.; Matsumoto, Y. pH-driven, reversible epoxy ring opening/closing in graphene oxide. Carbon 2015, 84, 560–566. [Google Scholar] [CrossRef]
- Shih, C.J.; Lin, S.; Sharma, R.; Strano, M.S.; Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 2012, 28, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Dam, V.A.T.; Zevenbergen, M.A.G.; van Schaijk, R. Flexible chloride sensor for sweat analysis. Proc. Eng. 2015, 120, 237–240. [Google Scholar] [CrossRef]
- Harris, N.; Cranny, A.; Rivers, M.; Smettem, K.; Lennard, E.G.B. Application of distributed wireless chloride sensors to environmental monitoring: Initial results. IEEE T Instrum. Meas. 2016, 65, 736–743. [Google Scholar] [CrossRef]
- Tseng, S.C.; Wu, T.Y.; Chou, J.C.; Liao, Y.H.; Lai, C.H.; Yan, S.J.; Wu, Y.X.; Wu, C.Y.; Tseng, T.W. Investigation of the temperature effect for the chloride ion sensor. In Proceedings of the 12th Asian Conference on Chemical Sensors (ACCS2017), Hanoi, Vietnam, 12–15 November 2017; pp. 244–247. [Google Scholar]
- Barron, J.J.; Ashton, C. The effect of temperature on conductivity measurement. Available online: https://www.reagecon.com/pdf/technicalpapers/Effect_of_Temperature_TSP-07_Issue3.pdf (accessed on 18 February 2018).
- Chen, J.; Liu, J.; Zhang, G.; He, Z. Study on the strength of sea sand concrete introduced by chloride ion. In Proceedings of the 2011 2nd International Conference on Mechanic Automation and Control Engineering (MACE’ 2011), Hohhot, China, 15–17 July 2011; pp. 6927–6930. [Google Scholar]
- Zhong, Y.; Zhao, S.; Liu, T. Drift characteristics of pH-ISFET output. Chin. J. Semiconduct. 1994, 15, 838–843. [Google Scholar]
- Chou, J.C.; Tsai, H.M.; Shiao, C.N.; Lin, J.S. Study and simulation of the drift behavior of hydrogenated amorphous silicon gate pH-ISFET. Sens. Actuators B Chem. 2000, 62, 97–101. [Google Scholar] [CrossRef]
Sensing Film | Sensing Mechanism | Sensitivity (pCl) | Detection Chloride Range (M) | Reference |
---|---|---|---|---|
PET/RuO2/GO/chloride film | Potentiometric | 41.0 mV/pCl | 1 × 10−5 M to 1 M | In this study |
PET/RuO2 chloride film | Potentiometric | 25.1 mV/pCl | 1 × 10−5 M to 1 M | [14] 2106 |
PET/AgCl paste | Potentiometric | 57.0 mV/decade | 1 × 10−3 M to 3 M | [35] 2015 |
Alumina/silver | Potentiometric | 59.2 mV/pCl | 6.25 × 10−4 M to 1 M | [36] 2016 |
Carbon paste electrode | Amperometric | 1.1 nA/µM | 1 × 10−4 M to 1 × 10−3 M | [18] 2008 |
Solution Temperature (°C) | Sensitivity (mV/pCl) | |
---|---|---|
PET/RuO2/GO (In This Study) | PET/RuO2 [37] 2017 | |
10 | 28.2 ± 1.4 | 27.7 ± 0.0 |
20 | 42.5 ± 2.0 | 36.8 ± 0.0 |
30 | 47.1 ± 1.8 | 39.8 ± 1.3 |
40 | 54.1 ± 2.0 | 41.5 ± 1.6 |
50 | 46.6 ± 2.1 | 22.6 ± 0.0 |
NaCl Concentration (M) | Ret (kΩ) | Rs (kΩ) | Cdl (pF) |
---|---|---|---|
1 | 584.3 ± 30.7 | 3.5 ± 0.1 | 73.4 ± 0.8 |
0.1 | 1047.3 ± 6.4 | 2.7 ± 0.2 | 93.8 ± 0.8 |
1 × 10−2 | 1131.7 ± 24.8 | 2.6 ± 0.3 | 88.8 ± 0.2 |
1 × 10−3 | 1681.0 ± 32.9 | 3.4 ± 0.3 | 85.8 ± 2.7 |
1 × 10−4 | 1728.3 ± 44.2 | 4.6 ± 0.3 | 70.4 ± 1.0 |
1 × 10−5 | 2350.5 ± 71.4 | 3.3 ± 0.3 | 94.0 ± 0.8 |
Solution Temperature (°C) | Electron Transfer Resistance Ret (kΩ) | Solution Resistance Rs (kΩ) | Double Layer Capacitor Cdl (pF) |
---|---|---|---|
10 | 274.7 ± 52.7 | 0.4 ± 0.2 | 238 ± 37.6 |
20 | 129.9 ± 25.1 | 3.6 ± 1.8 | 535 ± 29.4 |
30 | 83.8 ± 4.3 | 2.5 ± 0.2 | 543 ± 21.0 |
40 | 41.5 ± 13.0 | 1.2 ± 1.3 | 339 ± 37.5 |
50 | 34.9 ± 11.8 | 2.1 ± 0.9 | 416 ± 10.2 |
Solution Temperature (°C) | Drift Rate (mV/h) |
---|---|
10 | 8.2 |
20 | 4.7 |
30 | 4.2 |
40 | 3.6 |
50 | 2.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, S.-C.; Wu, T.-Y.; Chou, J.-C.; Liao, Y.-H.; Lai, C.-H.; Yan, S.-J.; Tseng, T.-W. Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO2/GO at Different Temperatures. Sensors 2018, 18, 632. https://doi.org/10.3390/s18020632
Tseng S-C, Wu T-Y, Chou J-C, Liao Y-H, Lai C-H, Yan S-J, Tseng T-W. Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO2/GO at Different Temperatures. Sensors. 2018; 18(2):632. https://doi.org/10.3390/s18020632
Chicago/Turabian StyleTseng, Shi-Chang, Tong-Yu Wu, Jung-Chuan Chou, Yi-Hung Liao, Chih-Hsien Lai, Siao-Jie Yan, and Ting-Wei Tseng. 2018. "Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO2/GO at Different Temperatures" Sensors 18, no. 2: 632. https://doi.org/10.3390/s18020632
APA StyleTseng, S. -C., Wu, T. -Y., Chou, J. -C., Liao, Y. -H., Lai, C. -H., Yan, S. -J., & Tseng, T. -W. (2018). Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO2/GO at Different Temperatures. Sensors, 18(2), 632. https://doi.org/10.3390/s18020632