Electrochemical Hydrogen Peroxide Sensor Based on Macroporous Silicon
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anglin, E.J.; Cheng, L.; Freeman, W.R.; Sailor, M.J. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 2008, 60, 1266–1277. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Park, S.; Yeow, J.T.W.; Langner, A.; Müller, F. A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B Chem. 2010, 149, 136–142. [Google Scholar] [CrossRef]
- Galeazzo, E.; Peres, H.E.M.; Santos, G.; Peixoto, N.; Ramirez-Fernandez, F.J.; Ramirez-Fernandez, F.J. Gas sensitive porous silicon devices: Responses to organic vapors. Sens. Actuators B Chem. 2003, 93, 384–390. [Google Scholar] [CrossRef]
- Al-Hardan, N.H.; Abdul Hamid, M.A.; Naser, M.A.; Azman, J.; Roslinda, S.; Norinsan, K.O.; Lim, K.K.; Weesiong, C.; Al-Rawi, H.N.; Ahmed, N.; et al. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor. Sensors 2016, 16, 839. [Google Scholar] [CrossRef] [PubMed]
- Föl, H.; Carstensen, M.; Christophersen, J.; Hasse, G. Formation and application of porous silicon. Mater. Sci. Eng. R Rep. 2002, 39, 93–141. [Google Scholar] [CrossRef]
- Barillaro, G.; Strambini, L.M. An integrated CMOS sensing chip for NO2 detection. Sens. Actuators B Chem. 2008, 134, 585–590. [Google Scholar] [CrossRef]
- Song, M.-J.; Yun, D.-H.; Jin, J.-H.; Min, N.-K.; Hong, S.-I. Comparison of Effective Working Electrode Areas on Planar and Porous Silicon Substrates for Cholesterol Biosensor. Jpn. J. Appl. Phys. 2006, 45, 7197–7202. [Google Scholar] [CrossRef]
- Setzu, S.; Salis, S.; Demontis, V.; Salis, A.; Monduzzi, M.; Mula, G. Porous silicon-based potentiometric biosensor for triglycerides. Phys. Status Solidi 2007, 204, 1434–1438. [Google Scholar] [CrossRef]
- Ikonen, T.; Nissinen, T.; Pohjalainen, E.; Sorsa, O.; Kallio, T.; Lehto, V.-P. Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries. Sci. Rep. 2017, 7, 7880. [Google Scholar] [CrossRef] [PubMed]
- Pirasteh, P.; Charrier, J.; Dumeige, Y.; Joubert, P.; Haesaert, S.; Haji, L. Further results on porous silicon optical waveguides at 1.55 µm. Phys. Status Solidi 2007, 204, 1346–1350. [Google Scholar] [CrossRef]
- RoyChaudhuri, C. A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor. Sens. Actuators B Chem. 2015, 210, 310–323. [Google Scholar] [CrossRef]
- Dhanekar, S.; Jain, S. Porous silicon biosensor: Current status. Biosens. Bioelectron. 2013, 41, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Muller, E.I.; Muller, C.C.; Souza, J.P.; Muller, A.L.H.; Enders, M.S.P.; Doneda, M.; Frohlich, A.C.; Iop, G.D.; Anschau, K.F. Green microwave-assisted wet digestion method of carbohydrate-rich foods with hydrogen peroxide using single reaction chamber and further elemental determination using ICP-OES and ICP-MS. Microchem. J. 2017, 134, 257–261. [Google Scholar] [CrossRef]
- Rosa, J.M.; Fileti, A.M.F.; Tambourgi, E.B.; Santan, J.C.C. Dyeing of cotton with reactive dyestuffs: The continuous reuse of textile wastewater effluent treated by Ultraviolet/Hydrogen peroxide homogeneous photocatalysis. J. Clean. Prod. 2015, 90, 60–65. [Google Scholar] [CrossRef]
- Asghar, A.; Raman, A.A.A.; Daud, W.M.A.W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef]
- Okuda, S.; Nishiyama, N.; Saito, H.; Katsuki, H. Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc. Natl. Acad. Sci. USA 1996, 93, 12553–12558. [Google Scholar] [CrossRef] [PubMed]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Gorman, A.M.; McGowan, A.; O’Neill, C.; Cotter, T. Oxidative stress and apoptosis in neurodegeneration. J. Neurol. Sci. 1996, 139, 45–52. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q.; Cheng, Q.; Ding, F. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol. Cell. Biochem. 2009, 332, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zuo, Y. Factors affecting the levels of hydrogen peroxide in rainwater. Atmos. Environ. 1999, 33, 1469–1478. [Google Scholar] [CrossRef]
- Song, H.; Ni, Y.; Kokot, S. A novel electrochemical biosensor based on the hemin-graphene nano-sheets and gold nano-particles hybrid film for the analysis of hydrogen peroxide. Anal. Chim. Acta 2013, 788, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, M.P.; Mayoral, M.C.; Andres, J.M. A potentiometric titration for H2O2 determination in the presence of organic compounds. Anal. Methods 2013, 5, 1510–1514. [Google Scholar] [CrossRef]
- Matsubara, C.; Kawamoto, N.; Takamura, K. Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): An ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 1992, 117, 1781–1784. [Google Scholar] [CrossRef]
- Toyo’oka, T.; Kashiwazaki, T.; Kato, M. On-line screening methods for antioxidants scavenging superoxide anion radical and hydrogen peroxide by liquid chromatography with indirect chemiluminescence detection. Talanta 2003, 60, 467–475. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, F.B.; Lin, H.W.; Wu, F.; Chen, D.Z.; Wu, Z.Y. A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode. Electrochim. Acta 2013, 109, 750–755. [Google Scholar] [CrossRef]
- Guascito, M.R.; Chirizzi, D.; Malitesta, C.; Siciliano, T.; Tepore, A. Te oxide nanowires as advanced materials for amperometric nonenzymatic hydrogen peroxide sensing. Talanta 2013, 115, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Sivalingam, D.; Gopalakrishnan, J.B.; Krishnan, U.M.; Madanagurusamy, S.; Rayappan, J.B.B. Nanostructured ZnO thin film for hydrogen peroxide sensing. Phys. E Low-Dimens. Syst. Nanostruct. 2011, 43, 1804–1808. [Google Scholar] [CrossRef]
- Gao, P.; Liu, D. Facile synthesis of copper oxide nanostructures and their application in non-enzymatic hydrogen peroxide sensing. Sens. Actuators B Chem. 2015, 208, 346–354. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, R.; Chai, Y.; Zhang, L.; Wang, N.; Li, X. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens. Bioelectron. 2007, 22, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.K.; Saha, S.; Ramirez-Vick, J.E.; Gupta, V.; Bhansali, S.; Singh, S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Anal. Chim. Acta 2012, 737, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Al-Hardan, N.H.; Abdul Hamid, M.A.; Shamsudin, R.; Othman, N.K.; Kar Keng, L. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods. Sensors (Basel) 2016, 16, 1004. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, N.S.N.; Wang, Z.L.Z.L. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Adv. Mater. 2006, 18, 2432–2435. [Google Scholar] [CrossRef]
- Kumar, P.S.; Paik, P.; Raj, A.D.; Mangalaraj, D.; Nataraj, D.; Gedanken, A.; Ramakrishna, S. Biodegradability study and pH influence on growth and orientation of ZnO nanorods via aqueous solution process. Appl. Surf. Sci. 2012, 258, 6765–6771. [Google Scholar] [CrossRef]
- Al-Hardan, N.H.; Jalar, A.; Abdul Hamid, M.A.M.A.; Keng, L.K.; Shamsudin, R.; Majlis, B.Y. The room-temperature sensing performance of ZnO nanorods for 2-methoxyethanol solvent. Sens. Actuators B Chem. 2014, 203, 223–228. [Google Scholar] [CrossRef]
- Rahman, M.M.; Asiri, A.M. Development of selective and sensitive bicarbonate chemical sensor based on wet-chemically prepared CuO-ZnO nanorods. Sens. Actuators B Chem. 2015, 214, 82–91. [Google Scholar] [CrossRef]
- Kumar, P.; Maikap, S.; Qiu, J.-T.; Jana, S.; Roy, A.; Singh, K.; Cheng, H.-M.; Chang, M.-T.; Mahapatra, R.; Chiu, H.-C.; et al. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO Membrane in Electrolyte-Insulator Semiconductor Structure. Nanoscale Res. Lett. 2016, 11, 434. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Ren, Z.; Zheng, N.; Du, S.; Wu, J.; Tang, J.; Fu, H. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480. [Google Scholar] [CrossRef]
- Niu, X.; Zhao, H.; Chen, C.; Lan, M. Platinum nanoparticle-decorated carbon nanotube clusters on screen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide. Electrochim. Acta 2012, 65, 97–103. [Google Scholar] [CrossRef]
- Kurowska, E.; Brzózka, A.; Jarosz, M.; Sulka, G.D.; Jaskuła, M. Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim. Acta 2013, 104, 439–447. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, H.; Zhuo, J.; Zhu, Z.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 2013, 85, 10289–10295. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-J.J.; Hwang, S.W.; Whang, D. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 2010, 80, 1648–1652. [Google Scholar] [CrossRef] [PubMed]
- Han, K.N.; Li, C.A.; Bui, M.-P.N.; Pham, X.-H.; Kim, B.S.; Choa, Y.H.; Seong, G.H. Development of Pt/TiO2 nanohybrids-modified SWCNT electrode for sensitive hydrogen peroxide detection. Sens. Actuators B Chem. 2012, 174, 406–413. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Abarghoui, M.M.; Rezaei, B. Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sens. Actuators B Chem. 2014, 196, 398–405. [Google Scholar] [CrossRef]
Applied Voltage (V) | Sensitivity (μA μM−1·cm−2) | LOD (μM) (SNR = 3) |
---|---|---|
4 | 0.32 ± 0.082 | 4.38 |
5 | 0.55 ± 0.018 | 4.35 |
6 | 0.85 ± 0.023 | 3.61 |
Electrode | Detection Limit (μM) | Linea Range (μM) | References |
---|---|---|---|
Pt/TeO2-NWs | 0.60 | 2–16,000 | [26] |
CdOx in EIS structure | 1 | 1–200 | [36] |
Co3O4 NW | 2.4 | 15–675 | [37] |
Pt NP | 1.23 | 5–2000 | [38] |
Ag NW | 29.2 | 100–3100 | [39] |
MoS2 NP | 0.002 | 5–100 | [40] |
CuO/Cu foil | 16.7 | 42.5–40,000 | [41] |
Pt/TiO2/single-walled carbon nanotube | 0.73 | 0–3500 | [42] |
Cu porous Si | 0.27 | 500–3780 | [43] |
MPS/copper PCB | 4.35 | 10–5000 | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hardan, N.H.; Abdul Hamid, M.A.; Shamsudin, R.; AL-Khalqi, E.M.; Kar Keng, L.; Ahmed, N.M. Electrochemical Hydrogen Peroxide Sensor Based on Macroporous Silicon. Sensors 2018, 18, 716. https://doi.org/10.3390/s18030716
Al-Hardan NH, Abdul Hamid MA, Shamsudin R, AL-Khalqi EM, Kar Keng L, Ahmed NM. Electrochemical Hydrogen Peroxide Sensor Based on Macroporous Silicon. Sensors. 2018; 18(3):716. https://doi.org/10.3390/s18030716
Chicago/Turabian StyleAl-Hardan, Naif H., Muhammad Azmi Abdul Hamid, Roslinda Shamsudin, Ensaf Mohammed AL-Khalqi, Lim Kar Keng, and Naser M. Ahmed. 2018. "Electrochemical Hydrogen Peroxide Sensor Based on Macroporous Silicon" Sensors 18, no. 3: 716. https://doi.org/10.3390/s18030716
APA StyleAl-Hardan, N. H., Abdul Hamid, M. A., Shamsudin, R., AL-Khalqi, E. M., Kar Keng, L., & Ahmed, N. M. (2018). Electrochemical Hydrogen Peroxide Sensor Based on Macroporous Silicon. Sensors, 18(3), 716. https://doi.org/10.3390/s18030716