Determination of Food Oxalates Using Silica–Titania Xerogel Modified with Eriochrome Cyanine R
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of Silica–Titania Xerogel
2.3. General Procedure for the TPMD—Silica–Titania Xerogel Interaction Study
2.4. Preparation of the Sensor Material—Eriochrome Cyanine R Modified Silica–Titania Xerogel (Si-Ti/ECR)
2.5. General Procedure for the Oxalate—Si-Ti/ECR Interaction Study
2.6. Sample Preparation and Solid Phase Spectrophotometric Determination Procedure
3. Results
3.1. Interaction of Silica–Titania Xerogels with Triphenylmethane Dyes
3.2. Analytical Application
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Holmes, R.P.; Goodman, H.O.; Assimos, D.G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001, 59, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Merusi, C.; Corradini, C.; Cavazza, A.; Borromei, C.; Salvadeo, P. Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal. Food Chem. 2010, 120, 615–620. [Google Scholar] [CrossRef]
- Siener, R.; Honow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem. 2006, 98, 220–224. [Google Scholar] [CrossRef]
- France, N.C.; Holland, P.T.; McGhie, T.K.; Wallace, M.R. Measurement of plasma oxalate by capillary gas chromatography and its validation by isotope dilution mass spectrometry. J. Chromatogr. 1988, 433, 1–7. [Google Scholar] [CrossRef]
- Fry, I.D.R.; Starkey, B.J. The Determination of Oxalate in Urine and Plasma by High Performance Liquid Chromatography. Ann. Clin. Biochem. 1991, 28, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Del Nozal, M.J.; Bernal, J.L.; Diego, J.C.; Gomez, L.A.; Ruiz, J.M.; Higes, M. Determination of oxalate, sulfate and nitrate in honey and honeydew by ion-chromatography. J. Chromatogr. A 2000, 881, 629–638. [Google Scholar] [CrossRef]
- Honow, R.; Hesse, A. Comparison of extraction methods for the determination of soluble and total oxalate in foods by HPLC-enzyme-reactor. Food Chem. 2002, 78, 511–521. [Google Scholar] [CrossRef]
- Maya, F.; Estela, J.M.; Cerdà, V. Multisyringe ion chromatography with chemiluminescence detection for the determination of oxalate in beer and urine samples. Microchim. Acta 2011, 173, 33–41. [Google Scholar] [CrossRef]
- Milardovic, S.; Kerekovic, I.; Nodilo, M. A novel biamperometric biosensor for urinary oxalate determination using flow-injection analysis. Talanta 2008, 77, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, C.; Yokoi, Y.; Tsuji, M.; Takamu, K. Flow Injection Analysis of Oxalate in Foods Using Titanium(IV)-Porphyrin Reagent. Anal. Sci. 1995, 11, 245–249. [Google Scholar] [CrossRef]
- Milardovic, S.; Grabaric, Z.; Rumenjak, V.; Jukic, M. Rapid Determination of Oxalate by an Amperometric Oxalate Oxidase-Based Electrode. Electroanalysis 2000, 12, 1051–1058. [Google Scholar] [CrossRef]
- Fiorito, P.A.; Córdoba de Torresi, S.I. Optimized multilayer oxalate biosensor. Talanta 2004, 62, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.M.; Higson, S.P.; Vadgama, P.M. Amperometric enzyme electrode for the determination of urine oxalate. Anal. Chim. Acta 1997, 343, 59–68. [Google Scholar] [CrossRef]
- Yadav, S.; Devi, R.; Kumari, S.; Yadav, S.; Pundir, C.S. An amperometric oxalate biosensor based on sorghum oxalate oxidase bound carboxylated multiwalled carbon nanotubes–polyaniline composite film. J. Biotechnol. 2011, 151, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Chauhan, N.; Rajneesh; Verma, M.; Ravi. A novel amperometric biosensor for oxalate determination using multi-walled carbon nanotube-gold nanoparticle composite. Sens. Actuators B Chem. 2011, 155, 796–803. [Google Scholar] [CrossRef]
- Sezginturk, M.K.; Dinckaya, E. A novel amperometric biosensor based on spinach (Spinacia oleracea) tissue homogenate for urinary oxalate determination. Talanta 2003, 59, 545–551. [Google Scholar] [CrossRef]
- Ruan, Q.-Y.; Zheng, X.-Q.; Chen, B.-L.; Xiao, Y.; Peng, X.-X.; Leung, D.W.M.; Liu, E.-E. Determination of total oxalate contents of a great variety of foods commonly available in Southern China using an oxalate oxidase prepared from wheat bran. J. Food Compos. Anal. 2013, 32, 6–11. [Google Scholar] [CrossRef]
- Chauhan, N.; Narang, J.; Shweta; Pundir, C.S. Immobilization of barley oxalate oxidase onto gold–nanoparticle-porous CaCO3 microsphere hybrid for amperometric determination of oxalate in biological materials. Clin. Biochem. 2012, 45, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Relhan, S.; Pundir, C.S. Construction of a chitosan/polyaniline/graphene oxide nanoparticles/polypyrrole/Au electrode for amperometric determination of urinary/plasma oxalate. Sens. Actuators B Chem. 2013, 186, 17–26. [Google Scholar] [CrossRef]
- Allan, A.L.; Fernandez Band, B.S.; Rubio, E. Spectrophotometric Determination of Oxalate in Aqueous Solution. Microchem. J. 1986, 34, 5. [Google Scholar] [CrossRef]
- Munoz, J.A.; Campana, A.M.G.; Barrero, F.A. Effect of cationic micelles on the formation of the complex oxalate–Alizarin Red S–Zr(IV). Application to the sensitive fluorescence determination of oxalate ion. Talanta 1998, 47, 387–399. [Google Scholar] [CrossRef]
- Zaporozhets, O.A.; Tsyukalo, L.Y. Determination of fluoride and oxalate using the indicator reaction of Zr(IV) with methylthymol blue adsorbed on silica gel. Anal. Chim. Acta 2007, 597, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Q.; Tian, G.; Ge, H. A fluorescent turn-off/on method for detection of Cu2+ and oxalate using carbon dots as fluorescent probes in aqueous solution. Mater. Lett. 2014, 115, 233–236. [Google Scholar] [CrossRef]
- Morosanova, E.I. Silica and silica–titania sol–gel materials: Synthesis and analytical application. Talanta 2012, 102, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Morosanova, M.A.; Morosanova, E.I.; Anisimov, D.I.; Zolotov, Y.A. Using Silica–titania Xerogels for Solid Phase Spectrophotometric Determination of Fluoride in Oral Hygiene Products. Curr. Anal. Chem. 2014, 11, 291–299. [Google Scholar] [CrossRef]
- Marczenko, Z.; Balcerzak, M. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Morosanova, E.I.; Belyakov, M.V.; Zolotov, Y.A. Silica–Titania Xerogels: Solid Phase Spectrophotometric and Field Test Determination of Hydrogen Peroxide in Disinfectants. J. Anal. Chem. 2012, 67, 151–155. [Google Scholar] [CrossRef]
- Morosanova, M.A.; Morosanova, E.I. Silica-titania xerogel for solid phase spectrophotometric determination of salicylate and its derivatives in biological liquids and pharmaceuticals. Chem. Cent. J. 2015, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Morosanova, E.I.; Belyakov, M.V.; Zolotov, Y.A. Silicon–titanium xerogels: Synthesis and application to the determination of ascorbic acid and polyphenols. J. Anal. Chem. 2012, 67, 14–20. [Google Scholar] [CrossRef]
- Morosanova, M.A.; Morosanova, E.I. Silica–titania sensor material prepared by cetylpyridinium chloride assisted Sol–gel synthesis for solid phase spectrophotometric and visual test determination of propyl gallate in food samples. Anal. Methods 2016, 8, 8092–8098. [Google Scholar] [CrossRef]
- Langmyhr, F.J.; Klausen, K.S. Complex formation of iron(III) with chrome azurol S. Anal. Chim. Acta 1963, 29, 149–167. [Google Scholar] [CrossRef]
- Kiernan, J.A. Chromoxane cyanine R. I. Physical and chemical properties of the dye and of some of its iron complexes. J. Microsc. 1984, 134, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.L.; Ueno, K.; Imamura, T. CRC Handbook of Analytical Reagents, 2nd ed.; CRC Press: Florida, FL, USA, 1992; pp. 35–43. [Google Scholar]
- Morosanova, E.I.; Velikorodnyi, A.A.; Zolotov, Y.A.; Skornyakov, V.I. Modifying silicic acid xerogels and accelerating heterogeneous reactions with their participation with the use of microwave radiation. J. Anal. Chem. 2000, 55, 1136–1141. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol Antioxidant Quantity and Quality in Foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Venkaiah, K.; Anitha, P.; Venu, L.; Raghuna, M. Antioxidant activity of commonly consumed plant foods of India: Contribution of their phenolic content. Int. J. Food Sci. Nutr. 2007, 58, 250–260. [Google Scholar] [CrossRef] [PubMed]
Triphenylmethane Dye | λmax, nm | pH Optimum | T1/2, min | Keq, M−1 | Capacity, µmol/g (n = 3, P = 0.95) |
---|---|---|---|---|---|
Pyrocatechol violet | 640 | 7.3 | 4.2 | 13,500 | 0.5 ± 0.1 |
Eriochrome cyanine R | 570 | 2.0 | 2.1 | 1200 | 0.9 ± 0.2 |
Chrome azurol S | 550 | 3.0 | 2.5 | 1400 | 0.8 ± 0.2 |
BET Surface Area, m2/g | Micropore Area, m2/g | Total Pore Volume, cm3/g | Micropore Volume, cm3/g | Average Pore Diameter, Å | |
---|---|---|---|---|---|
Si-Ti | 617 | 250 | 0.30 | 0.11 | 19.2 |
Si-Ti/ECR | 520 | 194 | 0.25 | 0.09 | 19.3 |
Interfering Compound | Interference Threshold, mg/L | Reference |
---|---|---|
Chloride | 3.5 × 103 | [10] |
3.0 × 101 | [21] | |
1.8 × 104 | [22] | |
7.1 × 101 | [23] | |
4.0 × 103 | Present work | |
Phosphate | 5.0 | [20] |
6.0 × 10−2 | [21] | |
4.8 × 102 | [22] | |
1.2 × 104 | Present work | |
Nitrate | 2.8 × 102 | [20] |
6.0 × 101 | [21] | |
9.3 × 103 | [22] | |
6.2 × 101 | [23] | |
1.1 × 104 | Present work | |
Sulfate | 2.0 × 101 | [20] |
6.0 | [21] | |
4.8 × 102 (in presence of BaCl2) | [22] | |
7.6 × 101 | [23] | |
2.0 × 103 | Present work | |
Citric acid | 4.8 × 103 | [10] |
4.0 | [20] | |
6.0 × 10−2 | [21] | |
1.0 × 104 | Present work | |
Ascorbic acid | 0.2 | [10] |
6.0 | [21] | |
2.0 × 102 | Present work | |
Tartaric acid | 7.5 × 104 | [10] |
3.0 × 10−2 | [21] | |
2.0 × 102 | Present work | |
Gallic acid | 0.6 × 102 | Present work |
Sucrose | 8.6 × 104 | [10] |
2.0 × 103 | Present work |
Sample | Oxalate Added, mg/L | Recovery, % |
---|---|---|
Sorrel | 184 | 93.2 |
368 | 107.7 | |
Spinach | 184 | 96.7 |
368 | 98.7 | |
Black pepper | 184 | 83.6 |
368 | 103.9 | |
Parsley | 184 | 100.3 |
368 | 105.6 | |
Ginger | 184 | 93.0 |
368 | 95.5 |
Sample | Oxalate Content, mg/100 g (RSD, %) | |
---|---|---|
Proposed method | HPLC | |
Sorrel | 1079 ± 158 (8.5) | 995 ± 24 (1.4) |
Spinach | 811 ± 152 (10.9) | 720 ± 15 (1.2) |
Black pepper | 876 ± 210 (13.9) | 857 ± 18 (1.2) |
Parsley | 782 ± 80 (5.9) | 835 ± 17 (1.4) |
Ginger | 662 ± 150 (13.2) | 634 ± 16 (1.5) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morosanova, M.A.; Samodelov, Z.V.; Morosanova, E.I. Determination of Food Oxalates Using Silica–Titania Xerogel Modified with Eriochrome Cyanine R. Sensors 2018, 18, 864. https://doi.org/10.3390/s18030864
Morosanova MA, Samodelov ZV, Morosanova EI. Determination of Food Oxalates Using Silica–Titania Xerogel Modified with Eriochrome Cyanine R. Sensors. 2018; 18(3):864. https://doi.org/10.3390/s18030864
Chicago/Turabian StyleMorosanova, Maria A., Zahar V. Samodelov, and Elena I. Morosanova. 2018. "Determination of Food Oxalates Using Silica–Titania Xerogel Modified with Eriochrome Cyanine R" Sensors 18, no. 3: 864. https://doi.org/10.3390/s18030864
APA StyleMorosanova, M. A., Samodelov, Z. V., & Morosanova, E. I. (2018). Determination of Food Oxalates Using Silica–Titania Xerogel Modified with Eriochrome Cyanine R. Sensors, 18(3), 864. https://doi.org/10.3390/s18030864