Aptamer-Modified Magnetic Beads in Biosensing
Abstract
:1. Introduction
2. Magnetic Beads and Their Biological Applications
2.1. Magnetic Beads and Their Modification
2.2. Separation of Biomolecules Using Modified MBs
2.2.1. Cell Separations
2.2.2. mRNA Isolation
2.2.3. Protein and Peptide Enrichment
3. Aptamer-Modified Magnetic Beads in Analytical Applications
3.1. Electrochemical
3.1.1. Voltammetric Assays
3.1.2. Differential Pulse Voltammetry (DPV)
3.1.3. Squarewave Voltammetry (SWV)
3.1.4. Potentiometric Assays
3.1.5. Impedimetric Assays (EIS)
3.1.6. Electrogenerated Chemiluminescence
3.2. Optical
3.2.1. Fluorescence Based Assays
3.2.2. Colorimetric Assay
3.2.3. Chemiluminescence Assays
3.2.4. Surface-Enhanced Raman Scattering-Based Assays
3.3. Piezoelectric Assays
3.4. PCR-Based Assays
4. Conclusions and Future Trends
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, H.; Zu, Y. A highlight of recent advances in aptamer technology and its application. Molecules 2015, 20, 11959–11980. [Google Scholar] [CrossRef] [PubMed]
- Witt, M.; Walter, J.-G.; Stahl, F. Aptamer microarrays—Current status and future prospects. Microarrays 2015, 4, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.-G.; Heilkenbrinker, A.; Austerjost, J.; Timur, S.; Stahl, F.; Scheper, T. Aptasensors for small molecule detection. Z. Naturforsch. B 2012, 67, 976–986. [Google Scholar] [CrossRef]
- Urmann, K.; Walter, J.-G.; Scheper, T.; Segal, E. Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds. Anal. Chem. 2015, 87, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Santos, T.A.P. Sensors and biosensors based on magnetic nanoparticles. TRAC Trend Anal. Chem. 2014, 62, 28–36. [Google Scholar] [CrossRef]
- Aguilar-Arteaga, K.; Rodriguez, J.A.; Barrado, E. Magnetic solids in analytical chemistry: A review. Anal. Chim. Acta 2010, 674, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Kudr, J.; Klejdus, B.; Adam, V.; Zitka, O. Magnetic solids in electrochemical analysis. TRAC Trend Anal. Chem. 2017, 98, 104–113. [Google Scholar] [CrossRef]
- Bamrungsap, S.; Chen, T.; Shukoor, M.I.; Chen, Z.; Sefah, K.; Chen, Y.; Tan, W. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 2012, 6, 3974–3981. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Xu, L.; Yan, W.; Wu, W.; Yu, Q.; Tian, X.; Dai, R.; Li, X. A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim. Acta 2017, 184, 1539–1545. [Google Scholar] [CrossRef]
- Khng, H.P.; Cunliffe, D.; Davies, S.; Turner, N.A.; Vulfson, E.N. The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins. Biotechnol. Bioeng. 1998, 60, 419–424. [Google Scholar] [CrossRef]
- Liao, M.-H.; Chen, D.-H. Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent. Biotechnol. Lett. 2002, 24, 1913–1917. [Google Scholar] [CrossRef]
- Bucak, S.; Jones, D.A.; Laibinis, P.E.; Hatton, T.A. Protein separations using colloidal magnetic nanoparticles. Biotechnol. Prog. 2003, 19, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Xu, K.; Song, X.; Hu, J.; Yang, W.; Wang, C. Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. J. Colloid Interface Sci. 2009, 336, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Oktem, H.A.; Bayramoglu, G.; Ozalp, V.C.; Arica, M.Y. Single-step purification of recombinant thermus aquaticus DNA polymerase using DNA-aptamer immobilized novel affinity magnetic beads. Biotechnol. Prog. 2007, 23, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Shukoor, M.I.; Natalio, F.; Tahir, M.N.; Ksenofontov, V.; Therese, H.A.; Theato, P.; Schröder, H.C.; Müller, W.E.; Tremel, W. Superparamagnetic γ-Fe2O3 nanoparticles with tailored functionality for protein separation. Chem. Commun. 2007, 4677–4679. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ding, X.; Zheng, Z.; Cheng, X.; Hu, X.; Peng, Y. A novel approach to magnetic nanoadsorbents with high binding capacity for bovine serum albumin. Macromol. Rapid Commun. 2007, 28, 346–351. [Google Scholar] [CrossRef]
- Jeng, J.; Lin, M.F.; Cheng, F.Y.; Yeh, C.S.; Shiea, J. Using high-concentration trypsin-immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature. Rapid Commun. Mass Spectrom. 2007, 21, 3060–3068. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, X.; Deng, C.; Yang, P.; Zhang, X. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. J. Proteome Res. 2007, 6, 3849–3855. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Yao, G.; Qi, D.; Li, Y.; Deng, C.; Yang, P.; Zhang, X. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres. Anal. Chem. 2008, 80, 3655–3665. [Google Scholar] [CrossRef]
- Chen, W.; Shen, H.; Li, X.; Jia, N.; Xu, J. Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34+ hematopoietic stem cells. Appl. Surf. Sci. 2006, 253, 1762–1769. [Google Scholar] [CrossRef]
- Antoine, J.-C.; Rodrigot, M.; Avrameas, S. Lymphoid cell fractionation on magnetic polyacrylamide-agarose beads. Immunochemistry 1978, 15, 443–452. [Google Scholar] [CrossRef]
- Krogh, T.N.; Berg, T.; Højrup, P. Protein analysis using enzymes immobilized to paramagnetic beads. Anal. Biochem. 1999, 274, 153–162. [Google Scholar] [CrossRef]
- Gatto-Menking, D.L.; Yu, H.; Bruno, J.G.; Goode, M.T.; Miller, M.; Zulich, A.W. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrocheminescence sensor. Biosens. Bioelectron. 1995, 10, 501–507. [Google Scholar] [CrossRef]
- Guesdon, J.-L.; Avrameas, S. Magnetic solid phase enzyme-immunoassay. Immunochemistry 1977, 14, 443–447. [Google Scholar] [CrossRef]
- Yavuz, C.T.; Prakash, A.; Mayo, J.; Colvin, V.L. Magnetic separations: From steel plants to biotechnology. Chem. Eng. Sci. 2009, 64, 2510–2521. [Google Scholar] [CrossRef]
- Towler, P.H.; Smith, J.D.; Dixon, D.R. Magnetic recovery of radium, lead and polonium from seawater samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetite. Anal. Chim. Acta 1996, 328, 53–59. [Google Scholar] [CrossRef]
- Šafařík, I.; Šafaříková, M.; Vrchotová, N. Study of sorption of triphenylmethane dyes on a magnetic carrier bearing an immobilized copper phthalocyanine dye. Collect. Czech. Chem. Commun. 1995, 60, 34–42. [Google Scholar] [CrossRef]
- Šafařı́ková, M.; Šafařı́k, I. Magnetic solid-phase extraction. J. Magn. Magn. Mater. 1999, 194, 108–112. [Google Scholar] [CrossRef]
- Hsing, I.; Xu, Y.; Zhao, W. Micro-and nano-magnetic particles for applications in biosensing. Electroanalysis 2007, 19, 755–768. [Google Scholar] [CrossRef]
- Quy, D.V.; Hieu, N.M.; Tra, P.T.; Nam, N.H.; Hai, N.H.; Thai Son, N.; Nghia, P.T.; Anh, N.T.V.; Hong, T.T.; Luong, N.H. Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J. Nanomater. 2013, 2013. [Google Scholar] [CrossRef]
- Chen, C.-T.; Chen, Y.-C. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2005, 77, 5912–5919. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, R. Magnetotactic bacteria. Science 1975, 190, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Maeda, Y.; Yoshino, T.; Takeyama, H.; Takahashi, M.; Ginya, H.; Aasahina, J.; Tajima, H. Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites, ‘Beads on Beads’. Anal. Chim. Acta 2007, 597, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Canfarotta, F.; Piletsky, S.A. Engineered magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 2014, 3, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Paleček, E.; Fojta, M. Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta 2007, 74, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Herr, J.K.; Smith, J.E.; Medley, C.D.; Shangguan, D.; Tan, W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 2006, 78, 2918–2924. [Google Scholar] [CrossRef] [PubMed]
- Zamay, G.S.; Kolovskaya, O.S.; Zamay, T.N.; Glazyrin, Y.E.; Krat, A.V.; Zubkova, O.; Spivak, E.; Wehbe, M.; Gargaun, A.; Muharemagic, D. Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Mol. Ther. 2015, 23, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Labib, M.; Green, B.; Mohamadi, R.M.; Mepham, A.; Ahmed, S.U.; Mahmoudian, L.; Chang, I.-H.; Sargent, E.H.; Kelley, S.O. Aptamer and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations. J. Am. Chem. Soc. 2016, 138, 2476–2479. [Google Scholar] [CrossRef] [PubMed]
- Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytom. Part A 1990, 11, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.M.; Willmore, W.G.; DeRosa, M.C. Aptamers: Promising tools for the detection of circulating tumor cells. Nucl. Acid Ther. 2016, 26, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Karrer, E.E.; Lincoln, J.E.; Hogenhout, S.; Bennett, A.B.; Bostock, R.M.; Martineau, B.; Lucas, W.J.; Gilchrist, D.G.; Alexander, D. In situ isolation of mRNA from individual plant cells: Creation of cell-specific cDNA libraries. Proc. Natl. Acad. Sci. USA 1995, 92, 3814–3818. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, I.R.; Chader, G.J. A novel method for the isolation of tissue-specific genes. Nucl. Acids Res. 1992, 20, 3528. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.A.; Kumar-Sinha, C.; Cao, X.; Kalyana-Sundaram, S.; Han, B.; Jing, X.; Sam, L.; Barrette, T.; Palanisamy, N.; Chinnaiyan, A.M. Transcriptome sequencing to detect gene fusions in cancer. Nature 2009, 458, 97. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.; Macheda, M.L.; Docherty, S.E.; Carty, M.D.; Henderson, M.A.; Soeller, W.C.; Gibbs, E.M.; James, D.E.; Best, J.D. Identification of a novel glucose transporter-like protein—GLUT-12. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E733–E738. [Google Scholar] [CrossRef] [PubMed]
- Helmkampf, M.; Bruchhaus, I.; Hausdorf, B. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proc. R. Soc. Lond. B Biol. Sci. 2008, 275, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Franzreb, M.; Siemann-Herzberg, M.; Hobley, T.J.; Thomas, O.R. Protein purification using magnetic adsorbent particles. Appl. Microbiol. Biotechnol. 2006, 70, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Kökpinar, Ö.; Walter, J.G.; Shoham, Y.; Stahl, F.; Scheper, T. Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads. Biotechnol. Bioeng. 2011, 108, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Lönne, M.; Bolten, S.; Lavrentieva, A.; Stahl, F.; Scheper, T.; Walter, J.-G. Development of an aptamer-based affinity purification method for vascular endothelial growth factor. Biotechnol. Rep. 2015, 8, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Zhou, Y.; Li, Y.; Meng, X.; Meng, X.; Liu, J.; Lu, S.; Ren, H.; Hu, P.; Liu, Z. A rapid immunomagnetic beads-based immunoassay for the detection of β-casein in bovine milk. Food Chem. 2014, 158, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Morozov, V.N.; Groves, S.; Turell, M.J.; Bailey, C. Three minutes-long electrophoretically assisted zeptomolar microfluidic immunoassay with magnetic-beads detection. J. Am. Chem. Soc. 2007, 129, 12628–12629. [Google Scholar] [CrossRef] [PubMed]
- Modh, H.B.; Bhadra, A.K.; Patel, K.A.; Chaudhary, R.K.; Jain, N.K.; Roy, I. Specific detection of tetanus toxoid using an aptamer-based matrix. J. Biotechnol. 2016, 238, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Ilgu, M.; Nilsen-Hamilton, M. Aptamers in analytics. Analyst 2016, 141, 1551–1568. [Google Scholar] [CrossRef] [PubMed]
- Modh, H.; Scheper, T.; Walter, J.G. Detection of ochratoxin A by aptamer-assisted real-time PCR-based assay (Apta-qPCR). Eng. Life Sci. 2017, 17, 923–930. [Google Scholar] [CrossRef]
- Modh, H.; Witt, M.; Urmann, K.; Lavrentieva, A.; Segal, E.; Scheper, T.; Walter, J.G. Aptamer-based detection of adenosine triphosphate via qPCR. Talanta 2017, 172, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Congur, G. Voltammetric aptasensor combined with magnetic beads assay developed for detection of human activated protein C. Talanta 2014, 128, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lin, F.; Yi, Y.; Huang, Y.; Li, H.; Zhang, Y.; Yao, S. Dual amplification strategy of highly sensitive thrombin amperometric aptasensor based on chitosan-Au nanocomposites. Analyst 2012, 137, 3488–3495. [Google Scholar] [CrossRef] [PubMed]
- Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal. Chem. 2007, 79, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Lu, J.; Zhong, Y.; Yu, Y.; Wang, Y.; Zhang, B.; Chen, Z. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens. Bioelectron. 2016, 75, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, M.; Guo, X.; Wang, J.; Xu, J. Boronic acid functionalized magnetic composites with sandwich-like nanostructures as a novel matrix for PDGF detection. Sens. Actuators B Chem. 2017, 250, 8–16. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Q.; Xiang, Y.; Yuan, R.; Chai, Y. Target-induced strand release and thionine-decorated gold nanoparticle amplification labels for sensitive electrochemical aptamer-based sensing of small molecules. Sens. Actuators B Chem. 2014, 197, 149–154. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Zhang, Y.; Ma, H.; Pang, X.; Hu, L.; Du, B.; Wei, Q. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+. Biosens. Bioelectron. 2016, 82, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Yang, D.; Chen, X.; Guo, Z.; Tang, Y. Voltammetric determination of tumor necrosis factor-α based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles. Microchim. Acta 2017, 184, 3901–3907. [Google Scholar] [CrossRef]
- Hao, N.; Jiang, L.; Qian, J.; Wang, K. Ultrasensitive electrochemical Ochratoxin A aptasensor based on CdTe quantum dots functionalized graphene/Au nanocomposites and magnetic separation. J. Electroanal. Chem. 2016, 781, 332–338. [Google Scholar] [CrossRef]
- Zelada-Guillén, G.A.; Tweed-Kent, A.; Niemann, M.; Göringer, H.U.; Riu, J.; Rius, F.X. Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. Biosens. Bioelectron. 2013, 41, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lei, J.; Ma, X.; Gong, J.; Qin, W. Potentiometric aptasensing of Listeria monocytogenes using protamine as an indicator. Anal. Chem. 2014, 86, 9412–9416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Ding, J.; Yu, H.; Yin, T.; Qin, W. Potentiometric aptasensing of Vibrio alginolyticus Based on DNA nanostructure—Modified magnetic beads. Sensors 2016, 16, 2052. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Duan, N.; Wu, S.; Dai, R.; Wang, Z.; Li, X. Impedimetric salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim. Acta 2016, 183, 337–344. [Google Scholar] [CrossRef]
- Jin, S.; Ye, Z.; Wang, Y.; Ying, Y. A novel impedimetric microfluidic analysis system for transgenic protein Cry1Ab detection. Sci. Rep. 2017, 7, 43175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, Z.; Ping, J.; Jing, S.; Ying, Y. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection. Biosens. Bioelectron. 2014, 59, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.; Sha, H.; Wang, Y.; Guo, W.; Zhang, X.; Wang, Z.; Huang, C.; Jia, N. Electrochemiluminescence resonance energy transfer system between GNRs and Ru(bpy)32+: Application in magnetic aptasensor for β-amyloid. Biosens. Bioelectron. 2018, 100, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Z.; Hao, N.; Feng, Q.-M.; Shi, H.-W.; Xu, J.-J.; Chen, H.-Y. A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposites. Biosens. Bioelectron. 2016, 77, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Yang, G.; Chen, J.; Wang, S. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of ochratoxin A in wheat. Biosens. Bioelectron. 2013, 41, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Wang, C.; Xiang, J.; Cheng, L.; Song, X.; Xu, L.; Peng, R.; Liu, Z. Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Res. 2014, 7, 1327–1336. [Google Scholar] [CrossRef]
- Lu, C.; Tang, Z.; Liu, C.; Kang, L.; Sun, F. Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food. Anal. Bioanal. Chem. 2015, 407, 4155–4163. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Sui, N.; Liu, M.; William, W.Y. A colorimetric assay for Hg(II) based on the use of a magnetic aptamer and a hybridization chain reaction. Microchim. Acta 2016, 183, 2855–2860. [Google Scholar] [CrossRef]
- Xi, Z.; Huang, R.; Li, Z.; He, N.; Wang, T.; Su, E.; Deng, Y. Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Appl. Mater. Interfaces 2015, 7, 11215–11223. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-W.; Li, J.; Yang, C.-H.; Shiesh, S.-C.; Lee, G.-B. An integrated microfluidic system for measurement of glycated hemoglobin Levels by using an aptamer-antibody assay on magnetic beads. Biosens. Bioelectron. 2015, 68, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yang, M.; Yang, X.; Li, H.; Guo, Z.; Rahma, M. A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, G.; Mehedi, H.M.; Ouyang, Q.; Chen, Q. A universal sers aptasensor based on DTNB labeled GNTs/Ag core-shell nanotriangle and CS-Fe3O4 magnetic-bead trace detection of Aflatoxin B1. Anal. Chim. Acta 2017, 986, 122–130. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, G.; Hu, Y. Aptamer recognition induced target-bridged strategy for proteins detection based on magnetic chitosan and silver/chitosan nanoparticles using surface-enhanced Raman spectroscopy. Anal. Chem. 2015, 87, 11039–11047. [Google Scholar] [CrossRef] [PubMed]
- Ozalp, V.C.; Bayramoglu, G.; Erdem, Z.; Arica, M.Y. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core—Shell type magnetic separation. Anal. Chim. Acta 2015, 853, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Guo, M.; Nie, Z.; Huang, Y.; Pan, C.; Zeng, K.; Zhang, Y.; Yao, S. Selective collection and detection of leukemia cells on a magnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads. Biosens. Bioelectron. 2010, 25, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wang, W.; Yang, Q.; Shi, C.; Cao, L. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosens. Bioelectron. 2011, 26, 3309–3312. [Google Scholar] [CrossRef] [PubMed]
- Csordas, A.; Gerdon, A.E.; Adams, J.D.; Qian, J.; Oh, S.S.; Xiao, Y.; Soh, H.T. Detection of proteins in serum by micromagnetic aptamer PCR (MAP) technology. Angew. Chem. Int. Ed. 2010, 49, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Ozalp, V.C.; Bayramoglu, G.; Kavruk, M.; Keskin, B.B.; Oktem, H.A.; Arica, M.Y. Pathogen detection by core—Shell type aptamer-magnetic preconcentration coupled to real-time PCR. Anal. Biochem. 2014, 447, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Liu, T.; Wang, Y.; Miao, P. Electrochemical aptasensors for detection of small molecules, macromolecules, and cells. Rev. Anal. Chem. 2016, 35, 201–211. [Google Scholar] [CrossRef]
- Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Voltammetric aptasensors for protein disease biomarkers detection: A review. Biotechnol. Adv. 2016, 34, 941–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Zhang, Z.; Ren, J.; Qu, X. Functionalized graphene as sensitive electrochemical label in target-dependent linkage of split aptasensor for dual detection. Biosens. Bioelectron. 2014, 62, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Gan, N.; Wang, D.; Cao, Y.; Chen, M.; Li, T.; Chen, Y. A “signal-on’’aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers. Biosens. Bioelectron. 2015, 74, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Pretsch, E. Nanoscale potentiometry. TRAC Trends Anal. Chem. 2008, 27, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Gu, Y.; Li, F.; Zhang, H.; Qin, W. DNA nanostructure-based magnetic beads for potentiometric aptasensing. Anal. Chem. 2015, 87, 6465–6469. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Fan, H.-T.; Hsieh, Y.-Z. Disposable aptasensor combining functional magnetic nanoparticles with rolling circle amplification for the detection of prostate-specific antigen. Sens. Actuators B Chem. 2018, 255, 341–347. [Google Scholar] [CrossRef]
- Palchetti, I.; Mascini, M. Electrochemical nanomaterial-based nucleic acid aptasensors. Anal. Bioanal. Chem. 2012, 402, 3103–3114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yan, D.; Wei, M. A 2D quantum dot-based electrochemiluminescence film sensor towards reversible temperature-sensitive response and nitrite detection. J. Mater. Chem. C 2015, 3, 10099–10106. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, Y.; Lu, X.; Chen, J.; Wei, F.; Huang, Z.; Zhou, C.; Duan, Y. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal. Chim. Acta 2017, 984, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tu, D.; Zhu, H.; Chen, X. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, D.-D.; Pang, D.-W.; Tang, H.-W. Fluorescent sensing of thrombin using a magnetic nano-platform with aptamer-target-aptamer sandwich and fluorescent silica nanoprobe. J. Lumin. 2017, 187, 9–13. [Google Scholar] [CrossRef]
- Bruno, J.G.; Phillips, T.; Carrillo, M.P.; Crowell, R. Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J. Fluoresc. 2009, 19, 427. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zhao, Q. Using fluoro modified RNA aptamers as affinity ligands on magnetic beads for sensitive thrombin detection through affinity capture and thrombin catalysis. Anal. Methods 2016, 8, 510–516. [Google Scholar] [CrossRef]
- Jin, Y.; Bai, J.; Li, H. Label-free protein recognition using aptamer-based fluorescence assay. Analyst 2010, 135, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, X.; Xie, Y.; Zhao, R.; Tan, C.; Jiang, Y. Label-free fluorescent assays based on aptamer—Target recognition. Analyst 2012, 137, 2309–2312. [Google Scholar] [CrossRef] [PubMed]
- McKeague, M.; Velu, R.; Hill, K.; Bardóczy, V.; Mészáros, T.; DeRosa, M.C. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 2014, 6, 2435–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Yang, C.; Zhou, X.; Qin, J. Label-free aptamer-based sensors for L-argininamide by using nucleic acid minor groove binding dyes. Chem. Commun. 2011, 47, 3192–3194. [Google Scholar] [CrossRef] [PubMed]
- Babendure, J.R.; Adams, S.R.; Tsien, R.Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 2003, 125, 14716–14717. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Chang, H.-T. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem. Commun. 2008, 12, 1461–1463. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Cai, S.; Zhang, P.; Peng, Y.; Chen, H.; Zhang, S.; Kong, J. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles. Anal. Chim. Acta 2011, 689, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Jurng, J. A simple colorimetric assay for the detection of metal ions based on the peroxidase-like activity of magnetic nanoparticles. Sens. Actuators B Chem. 2013, 176, 253–257. [Google Scholar] [CrossRef]
- Wang, C.; Qian, J.; Wang, K.; Yang, X.; Liu, Q.; Hao, N.; Wang, C.; Dong, X.; Huang, X. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens. Bioelectron. 2016, 77, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Z.; Wang, X.; Yang, X. Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sens. Actuators B Chem. 2010, 147, 428–433. [Google Scholar] [CrossRef]
- Yan, X.; Cao, Z.; Kai, M.; Lu, J. Label-free aptamer-based chemiluminescence detection of adenosine. Talanta 2009, 79, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ji, X.; Liu, B. Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Anal. Bioanal. Chem. 2011, 401, 213–219. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, R.; Gao, M.; Zhang, X. A rapid and simple method for efficient capture and accurate discrimination of circulating tumor cells using aptamer conjugated magnetic beads and surface-enhanced Raman scattering imaging. Anal. Bioanal. Chem. 2015, 407, 8883–8892. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Choi, N.; Ko, J.; Kim, K.; Lee, S.; Choo, J. Highly sensitive detection of thrombin using SERS-based magnetic aptasensors. Biosens. Bioelectron. 2013, 47, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Teller, C.; Halámek, J.; Makower, A.; Scheller, F.W. A set of piezoelectric biosensors using cholinesterases. In Biosensors and Biodetection; Springer: New York, NY, USA, 2009; pp. 3–22. [Google Scholar]
- Skládal, P. Piezoelectric biosensors. TRAC Trends Anal. Chem. 2016, 79, 127–133. [Google Scholar] [CrossRef]
- Song, W.; Zhu, Z.; Mao, Y.; Zhang, S. A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNAzyme-activated and aptamer-based target-triggering circular amplification. Biosens. Bioelectron. 2014, 53, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Dai, Z.; Tian, X.; Jiang, X. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control 2018, 85, 443–452. [Google Scholar] [CrossRef]
Method | Analytes | Detection Limit | Reference |
---|---|---|---|
Electrochemical | |||
Voltammetric | |||
Differential pulse voltammetry (DPV) | Human activated protein C | 2.35 µg mL−1 | [55] |
DPV | Thrombin | 5.5 fM | [56] |
DPV | Thrombin | 5 nM | [57] |
DPV | Human liver hepatocellular carcinoma cells (HepG2) | 15 cells mL−1 | [58] |
DPV | Platelet derived growth factor BB (PDGF BB) | 0.22 fM | [59] |
DPV | Adenosine | 0.05 nM | [60] |
DPV | Hg2+ | 0.33 nM | [61] |
Squarewave voltammetry (SWV) | Tumor necrosis factor-alpha (TNF-α) | 10 pg mL−1 | [62] |
SWV | Ochratoxin A | 0.07 pg mL−1 | [63] |
Potentiometric | |||
Potentiometric carbon-nanotube aptasensor | Variable surface glycoprotein from African Trypanosomes | 10 pM | [64] |
Direct Potential Measurement | Listeria monocytogenes | 10 cfu mL−1 | [65] |
Chronopotentiometry | Vibrio alginolyticus | 10 cfu mL−1 | [66] |
Impedimetric | |||
Electrochemical impedance spectroscopy | Salmonella | 25 cfu mL−1 | [67] |
Impedimetric microfluidic analysis | Protein Cry1Ab | 0.015 nM | [68] |
Microfluidic impedance device | Thrombin | 0.01 nM | [69] |
Electrogenerated Chemiluminescence | |||
Electrochemiluminescence resonance energy transfer system | β-amyloid | 4.2 × 10−6 ng mL−1 | [70] |
Ratiometric electrochemiluminescence | Cancer cells | 150 cells mL−1 | [71] |
Optical | |||
Fluorescence | |||
Signal-on fluorescent aptasensor | Ochratoxin A | 20 pg mL−1 | [72] |
Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation | Circulating tumour cells | 20 cells mL−1 | [73] |
Enzyme-linked aptamer assay | Oxytetracycline | 0.88 ng mL−1 | [74] |
Colorimetric | |||
Colorimetric assay (Methylene Blue-based) | Hg(II) | 0.7 nM | [75] |
Chemiluminescence | |||
Chemiluminescent | Hepatitis B Virus | 0.1 ng mL−1 | [76] |
Chemiluminescence (integrated microfluidic system) | Glycated haemoglobin | 0.65 g dL−1 for HbA1c and 8.8 g dL−1 for Hb | [77] |
Surface enhanced Raman scattering | |||
Molecular embedded SERS aptasensor | Aflatoxin B1 | 0.0036 ng mL−1 | [78] |
Universal SERS aptasensor | Aflatoxin B1 | 0.54 pg mL−1 | [79] |
Induced Target-Bridged Strategy | platelet derived growth factor BB | 3.2 pg mL−1 | [80] |
Piezoelectric | |||
Quartz crystal microbalance sensor | Salmonella enterica | 100 cfu mL−1 | [81] |
Magnet-quartz crystal microbalance system | Acute leukemia cells | 8 × 103 cells mL−1 | [82] |
PCR-based assays | |||
Apta-qPCR | ATP | 17 nM | [54] |
Apta-qPCR | Ochratoxin A | 0.009 ng mL−1 | [53] |
Rolling circle amplification | Cocaine | 0.48 nM | [83] |
Micromagnetic aptamer PCR | PDGF-BB | 62 fM | [84] |
Real-time PCR | Escherichia coli | 100 cfu mL−1 | [85] |
Magnetic relaxation | |||
Magnetic nanosensors | CCRF-CEM cell | 40 cells mL−1 | [8] |
Magnetic relaxation switch | Pseudomonas aeruginosa | 50 cfu mL−1 | [9] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modh, H.; Scheper, T.; Walter, J.-G. Aptamer-Modified Magnetic Beads in Biosensing. Sensors 2018, 18, 1041. https://doi.org/10.3390/s18041041
Modh H, Scheper T, Walter J-G. Aptamer-Modified Magnetic Beads in Biosensing. Sensors. 2018; 18(4):1041. https://doi.org/10.3390/s18041041
Chicago/Turabian StyleModh, Harshvardhan, Thomas Scheper, and Johanna-Gabriela Walter. 2018. "Aptamer-Modified Magnetic Beads in Biosensing" Sensors 18, no. 4: 1041. https://doi.org/10.3390/s18041041
APA StyleModh, H., Scheper, T., & Walter, J. -G. (2018). Aptamer-Modified Magnetic Beads in Biosensing. Sensors, 18(4), 1041. https://doi.org/10.3390/s18041041