New Digital Metal-Oxide (MOx) Sensor Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Architecture
2.2. Manufacturing Process
2.3. Experimental Methods
3. Results
3.1. Siloxane Stability
3.2. Total Volatile Organic Compounds
3.3. Humidity Cross-Sensitivity
3.4. CO2 equivalent
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Word Health Organization. Health Risks of air Pollution in Europe–HRAPIE Project: Recommendations for Concentration-Response Functions for Cost-Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; WHO Regional Office for Europe UN City: Copenhagen, Denmark, 2013. [Google Scholar]
- Guerreiro, C. Air Quality in Europe: 2013 Report; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Guerreiro, C.B.; Foltescu, V.; De Leeuw, F. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide. Global Update 2005. Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Tournier, G.; Pijolat, C. Selective filter for SnO2-based gas sensor: Application to hydrogen trace detection. Sens. Actuators B Chem. 2005, 106, 553–562. [Google Scholar] [CrossRef]
- Williams, D.E. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem. 1999, 57, 1–16. [Google Scholar] [CrossRef]
- Schüler, M.; Sauerwald, T.; Schütze, A. A novel approach for detecting HMDSO poisoning of metal oxide gas sensors and improving their stability by temperature cycled operation. J. Sens. Sens. Syst. 2015, 4, 305–311. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sens. Actuators B Chem. 2013, 188, 709–728. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. [Google Scholar] [CrossRef]
- Strike, D.J.; Meijerink, M.G.H.; Koudelka-Hep, M. Electronic noses—A mini-review. Fresenius J. Anal. Chem. 1999, 364, 499–505. [Google Scholar] [CrossRef]
- Güntner, A.T.; Righettoni, M.; Pratsinis, S.E. Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sens. Actuators B Chem. 2016, 223, 266–273. [Google Scholar] [CrossRef]
- Ponzoni, A.; Baratto, C.; Cattabiani, N.; Falasconi, M.; Galstyan, V.; Nunez-Carmona, E.; Rigoni, F.; Sberveglieri, V.; Zambotti, G.; Zappa, D. Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy). Sensors 2017, 17, 714. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.-B.; Lahlou, H.; Mohsen, Y.; Gaddari, A.; Berger, F. Sub-ppm Detection of Ammonia Using a Microfabricated Gas Preconcentrator and a Room Temperature Gas Sensor. Sens. Lett. 2015, 13, 913–916. [Google Scholar] [CrossRef]
- Tiwary, N.; Vinchurkar, M.; Patel, M.; Nathawat, R.; Pandey, S.; Rao, V.R. Fabrication, Characterization and Application of ZnO Nanostructure-Based Micro-Preconcentrator for TNT Sensing. J. Microelectromechanical Syst. 2016, 25, 968–975. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Stürmann, J.; Nicoletti, S.; Dori, L.; Cardinali, G.C. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column. Sens. Actuators B Chem. 2005, 105, 400–406. [Google Scholar] [CrossRef]
- Cabot, A.; Arbiol, J.; Cornet, A.; Morante, J.R.; Chen, F.; Liu, M. Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films 2003, 436, 64–69. [Google Scholar] [CrossRef]
- Frietsch, M.; Zudock, F.; Goschnick, J.; Bruns, M. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors. Sens. Actuators B Chem. 2000, 65, 379–381. [Google Scholar] [CrossRef]
- Fleischer, M.; Kornely, S.; Weh, T.; Frank, J.; Meixner, H. Selective gas detection with high-temperature operated metal oxides using catalytic filters. Sens. Actuators B Chem. 2000, 69, 205–210. [Google Scholar] [CrossRef]
- Güntner, A.T.; Abegg, S.; Wegner, K.; Pratsinis, S.E. Zeolite membranes for highly selective formaldehyde sensors. Sens. Actuators B Chem. 2018, 257, 916–923. [Google Scholar] [CrossRef]
- Schonauer, U.; Tafferner, M. Catalytic Layer System. U.S. Patent 5969232, 10 October 1999. [Google Scholar]
- Gramm, A.; Schütze, A. High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification. Sens. Actuators B Chem. 2003, 95, 58–65. [Google Scholar] [CrossRef]
- Eicker, Η.; Kartenberg, Η.J.; Jacob, Η. Untersuchung neuer Meßverfahren mit Metalloxidhalbleitern zur Überwachung von Kohlenoxid- Konzentrationen/Α study of new measuring techniques with metal oxide semiconductors designed to monitor carbon oxide concentrations. Tech. Mess. 1981, 48, 421–430. [Google Scholar] [CrossRef]
- FIS Datasheet SMB-AQ1. Available online: http://www.fisinc.co.jp/en/common/pdf/SMBAQ100E_P.pdf (accessed on 13 March 2018).
- Figaro Datasheet TGS-2600. Available online: http://www.figarosensor.com/products/2600pdf.pdf (accessed on 13 March 2018).
- SGX Datasheet MiCS-5914. Available online: https://www.sgxsensortech.com/content/uploads/2014/07/1108_Datasheet-MiCS-5914.pdf (accessed on 13 March 2018).
- Sensirion AG Datasheet SGP30. Available online: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9_Gas_Sensors/Sensirion_Gas_Sensors_SGP30_Datasheet_EN.pdf (accessed on 13 March 2018).
- Lei, Y.D.; Wania, F.; Mathers, D. Temperature-Dependent Vapor Pressure of Selected Cyclic and Linear Polydimethylsiloxane Oligomers. J. Chem. Eng. Data 2010, 55, 5868–5873. [Google Scholar] [CrossRef]
- Ehrhardt, J.-J.; Colin, L.; Jamois, D. Poisoning of platinum surfaces by hexamethyldisiloxane (HMDS): Application to catalytic methane sensors. Sens. Actuators B Chem. 1997, 40, 117–124. [Google Scholar] [CrossRef]
- Gaj, K.; Pakuluk, A. Volatile Methyl Siloxanes as Potential Hazardous Air Pollutants. Pol. J. Environ. Stud. 2015, 24, 937–943. [Google Scholar] [CrossRef]
- Dudzina, T.; von Goetz, N.; Bogdal, C.; Biesterbos, J.W.H.; Hungerbühler, K. Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: Prerequisite for human and environmental exposure assessment. Environ. Int. 2014, 62, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Horii, Y.; Kannan, K. Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch. Environ. Contam. Toxicol. 2008, 55, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Moody, R.P.; Koniecki, D.; Zhu, J. Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: Implication for dermal exposure. Environ. Int. 2009, 35, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Misztal, P.K.; Nazaroff, W.W.; Goldstein, A.H. Siloxanes Are the Most Abundant Volatile Organic Compound Emitted from Engineering Students in a Classroom. Environ. Sci. Technol. Lett. 2015, 2, 303–307. [Google Scholar] [CrossRef]
- Umweltbundesamt. Richtwerte für zyklische Dimethylsiloxane in der Innenraumluft. Bundesgesundheitsblatt 2011, 54, 388–400. [Google Scholar] [CrossRef]
- Weschler, C.J. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, B.C.; Coleman, B.K.; Destaillats, H.; Hodgson, A.T.; Lunden, M.M.; Weschler, C.J.; Nazaroff, W.W. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmos. Environ. 2006, 40, 6696–6710. [Google Scholar] [CrossRef]
- MacNaughton, P.; Satish, U.; Laurent, J.G.C.; Flanigan, S.; Vallarino, J.; Coull, B.; Spengler, J.D.; Allen, J.G. The impact of working in a green certified building on cognitive function and health. Build. Environ. 2017, 114, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Mølhave, L.; Clausen, G.; Berglund, B.; De Ceaurriz, J.; Kettrup, A.; Lindvall, T.; Maroni, M.; Pickering, A.C.; Risse, U.; Rothweiler, H.; et al. Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor Air 1997, 7, 225–240. [Google Scholar] [CrossRef]
- European Collaborative Action Indoor Air Quality & Its Impact on Man. Total Volatile Organic Compounds (TVOC) in Indoor air Quality Investigations Report 19; Office for Official Publications of the European Communities: Luxembourg, 1997; ISBN 978-92-828-1078-1. [Google Scholar]
- Barnes, D.H.; Wofsy, S.C.; Fehlau, B.P.; Gottlieb, E.W.; Elkins, J.W.; Dutton, G.S.; Novelli, P.C. Hydrogen in the atmosphere: Observations above a forest canopy in a polluted environment. J. Geophys. Res. Atmos. 2003, 108, 4197. [Google Scholar] [CrossRef]
- Coy, J.D.; Bigelow, P.L.; Buchan, R.M.; Tessari, J.D.; Parnell, J.O. Field evaluation of a portable photoionization detector for assessing exposure to solvent mixtures. Am. Ind. Hyg. Assoc. 2000, 61, 268–274. [Google Scholar] [CrossRef]
- Drummond, I. On-the-fly calibration of direct reading photoionization detectors. Am. Ind. Hyg. Assoc. J. 1997, 58, 820–822. [Google Scholar] [CrossRef]
- Schleibinger, H.; Hott, U.; Marchl, D.; Plieninger, P.; Braun, P.; Ruden, H. Ziel-und Richtwerte zur Bewertung der VOC-Konzentrationen in der Innenraumluft-ein Diskussionsbeitrag. Umweltmed. Forsch. Prax. 2002, 7, 139–147. [Google Scholar]
- Seifert, B. Richtwerte für die Innenraumluft Die Beurteilung der Innenraumluftqualität mit Hilfe der Summe der flüchtigen organischen Verbindungen (TVOC-Wert). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 1999, 42, 270–278. [Google Scholar] [CrossRef]
- Umweltbundesamt Beurteilung von Innenraumluftkontaminationen mittels Referenz- und Richtwerten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2007, 50, 990–1005. [CrossRef]
- Heiland, G.; Kohl, D. Physical and chemical aspects of oxidic semiconductor gas sensors. In Chemical Sensor Technology, Volume 1; Elsevier: Amsterdam, The Netherlands, 1988; pp. 15–38. [Google Scholar]
- Bârsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 2003, 15, R813. [Google Scholar] [CrossRef]
- Wicker, S.; Guiltat, M.; Weimar, U.; Hémeryck, A.; Barsan, N. Ambient Humidity Influence on CO Detection with SnO2 Gas Sensing Materials. A Combined DRIFTS/DFT Investigation. J. Phys. Chem. C 2017, 121, 25064–25073. [Google Scholar] [CrossRef]
- Degler, D.; Wicker, S.; Weimar, U.; Barsan, N. Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study. J. Phys. Chem. C 2015, 119, 11792–11799. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ. Health Perspect. 2015, 124, 805–8012. [Google Scholar] [CrossRef] [PubMed]
- Persily, A.; Dols, W.S. The relation of CO 2 concentration to office building ventilation. In Air Change Rate and Airtightness in Buildings; ASTM International: West Conshohocken, PA, USA, 1990. [Google Scholar]
- DIN, E. 13779: Ventilation for Non-Residential Buildings-Performance Requirements for Ventilation and Room-Conditioning Systems; Beuth Verlag GmbH: Berlin, Germany, 2007. [Google Scholar]
- Herberger, S.; Ulmer, H. New IAQ sensor for demand controlled ventilation 2012. REHVA J. 2012, 49, 37–40. [Google Scholar]
- Herberger, S.; Herold, M.; Ulmer, H. MOS gas sensor technology for demand controlled ventilation. In Proceedings of the 4th International Symposium on Building and Ductwork Air tightness and 30th AIVC Conference on Trends in High Performance Buildings and the role of Ventilation, Berlin, Germany, 1–2 October 2009. [Google Scholar]
- Tadesse, K.; Smith, D.; Eastwod, M.A. Breath Hydrogen (H2) and Methane (CH4) Excretion Patterns in Normal Man and in Clinical Practice. Q. J. Exp. Physiol. Cogn. Med. Sci. 1980, 65, 85–97. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rüffer, D.; Hoehne, F.; Bühler, J. New Digital Metal-Oxide (MOx) Sensor Platform. Sensors 2018, 18, 1052. https://doi.org/10.3390/s18041052
Rüffer D, Hoehne F, Bühler J. New Digital Metal-Oxide (MOx) Sensor Platform. Sensors. 2018; 18(4):1052. https://doi.org/10.3390/s18041052
Chicago/Turabian StyleRüffer, Daniel, Felix Hoehne, and Johannes Bühler. 2018. "New Digital Metal-Oxide (MOx) Sensor Platform" Sensors 18, no. 4: 1052. https://doi.org/10.3390/s18041052
APA StyleRüffer, D., Hoehne, F., & Bühler, J. (2018). New Digital Metal-Oxide (MOx) Sensor Platform. Sensors, 18(4), 1052. https://doi.org/10.3390/s18041052