High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors †
Abstract
:1. Introduction
2. Background
3. Silicon Design
4. Measurements Results
5. Discussion and Future Projections
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dutton, N.A.W.; Al Abbas, T.; Gyongy, I.; Henderson, R.K. Extending the Dynamic Range of Oversampled Binary SPAD Image Sensors. In Proceedings of the International Image Sensors Workshop, Hiroshima, Japan, 30 May–2 June 2017. [Google Scholar]
- Al Abbas, T.; Dutton, N.A.W.; Almer, O.; Della Rocca, F.M.; Pellegrini, S.; Rae, B.; Golanski, D.; Henderson, R.K. 8.25 µm Pitch 66% Fill Factor Global Shared Well SPAD Image Sensor in 40 nm CMOS FSI Technology. In Proceedings of the International Image Sensors Workshop, Hiroshima, Japan, 30 May–2 June 2017. [Google Scholar]
- Seitz, P.; Theuwissen, A. Single Photon Imaging, 1st ed.; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Fossum, E.R. Modeling the Performance of Single-Bit and Multi-Bit Quanta Image Sensors. IEEE J. Electron. Devices Soc. 2013, 1, 166–174. [Google Scholar] [CrossRef]
- Teranishi, N. Required Conditions for Photon-Counting Image Sensors. IEEE Trans. Electron. Devices 2012, 59, 2199–2205. [Google Scholar] [CrossRef]
- Dutton, N.A.W.; Gyongy, I.; Parmesan, L.; Henderson, R.K. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors. Sensors 2016, 16, 1122. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Fossum, E. Quanta Image Sensor Jot with Sub 0.3 e− rms. Read Noise and Photon Counting Capability. IEEE Electron. Device Lett. 2015, 36, 926–928. [Google Scholar] [CrossRef]
- Seo, M.-W.; Kawahito, S.; Kagawa, K.; Yasutomi, K. A 0.27 e− rms Read Noise 220-µv/e− Conversion Gain Reset-Gate-Less CMOS Image Sensor. IEEE Electron. Device Lett. 2015, 36, 1344–1347. [Google Scholar]
- Gyongy, I.; Dutton, N.A.W.; Parmesan, L.; Davies, A.; Saleeb, R.; Duncan, R.; Rickman, C.; Dalgarno, P.; Henderson, R.K. Bit-plane Processing Techniques for Low-Light, High Speed Imaging with a SPAD-based QIS. In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015. [Google Scholar]
- Pellegrini, S.; Rae, B.; Pingault, A.; Golanski, D.; Jouan, S.; Lapeyre, C.; .Mamdy, B. Industrialised SPAD in 40 nm Technology. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- Ma, J.; Masoodian, S.; Wang, T.J.; Fossum, E.R. A 1 Mjot 1040 fps 0.22 e− rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout. In Proceedings of the International Image Sensors Workshop, Hiroshima, Japan, 30 May–2 June 2017. [Google Scholar]
- Al Abbas, T.; Dutton, N.A.W; Almer, O.; Pellegrini, S.; Henrion, Y.; Henderson, R.K. Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-stacked CMOS technology. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Henderson, R.K.; Webster, E.A.G.; Walker, R.; Richardson, J.A.; Grant, L.A. A 3 × 3, 5 µm pitch, 3-transistor single photon avalanche diode array with integrated 11 V bias generation in 90 nm CMOS technology. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 14.2.1–14.2.4. [Google Scholar]
- You, Z.; Parmesan, L.; Pellegrini, S.; Henderson, R.K. 3 µm Pitch, 1 µm Active Diameter SPAD Arrays in 130 nm CMOS Imaging Technology. In Proceedings of the International Image Sensors Workshop, Hiroshima, Japan, 30 May–2 June 2017. [Google Scholar]
- Mori, M.; Sakata, Y.; Usuda, M.; Yamahira, S.; Kasuga, S.; Hirose, Y.; Kato, Y.; Tanaka, T. 6.6 A 1280 × 720 single-photon-detecting image sensor with 100 dB dynamic range using a sensitivity-boosting technique. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 120–121. [Google Scholar]
- Della Rocca, F.M.; Al Abbas, T.; Dutton, N.A.W.; Henderson, R.K. A High Dynamic Range SPAD Pixel for Time of Flight Imaging. In Proceedings of the IEEE Sensors, Glasgow, UK, 29 October–1 November 2017. [Google Scholar] [CrossRef]
- Pancheri, L.; Stoppa, D. A SPAD-based pixel linear array for high-speed time-gated fluorescence lifetime imaging. In Proceedings of the ESSCIRC, Athens, Greece, 14–18 September 2009; pp. 428–431. [Google Scholar]
- Niclass, C.; Sergio, M.; Charbon, E. A CMOS 64 × 48 Single Photon Avalanche Diode Array with Event-Driven Readout. In Proceedings of the 2006 32nd European Solid-State Circuits Conference, Montreux, Switzerland, 19–21 September 2006; pp. 556–559. [Google Scholar]
- Pancheri, L.; Massari, N.; Borghetti, F.; Stoppa, D. A 32 × 32 SPAD Pixel Array with Nanosecond Gating and Analog Readout. In Proceedings of the International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011. [Google Scholar]
- Stoppa, D.; Borghetti, F.; Richardson, J.; Walker, R.; Grant, L.; Henderson, R.K.; Gersbach, M.; Charbon, E. A 32 × 32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain. In Proceedings of the European Solid-State Circuits Conference (ESSCIRC), Athens, Greece, 14–18 September 2009; pp. 204–207. [Google Scholar]
- Panina, E.; Pancheri, L.; Dalla Betta, G.; Massari, N.; Stoppa, D. Compact CMOS Analog Counter for SPAD Pixel Arrays. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 214–218. [Google Scholar] [CrossRef]
- Dutton, N.A.W.; Grant, L.A.; Henderson, R.K. 9.8 µm SPAD-based Analogue Single Photon Counting Pixel with Bias Controlled Sensitivity. In Proceedings of the International Image Sensors Workshop, Snowbird, UT, USA, 12–16 June 2013. [Google Scholar]
- Dutton, N.A.W.; Gyongy, I.; Parmesan, L.; Gnecchi, S.; Calder, N.; Rae, B.R.; Pellegrini, S.; Grant, L.A.; Henderson, R.K. A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging. IEEE Trans. Electron. Devices 2016, 63, 189–196. [Google Scholar] [CrossRef]
- Burri, S.; Maruyama, Y.; Michalet, X.; Regazzoni, F.; Bruschini, C.; Charbon, E. Architecture and applications of a high resolution gated SPAD image sensor. Opt. Express 2014, 22, 17573–17589. [Google Scholar] [CrossRef] [PubMed]
- Lule, T.; Keller, H.; Wagner, M.; Bohm, M. 100,000 pixel 120 dB imager in TFA-technology. In Proceedings of the 1999 Symposium on VLSI Circuits. Digest of Papers (IEEE Cat. No.99CH36326), Kyoto, Japan, 17–19 June 1999; pp. 133–136. [Google Scholar]
- Decker, S.; McGrath, R.; Brehmer, K.; Sodini, C. A 256/spl times/256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output. In Proceedings of the 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, 5–7 February 1998; pp. 176–177. [Google Scholar]
- Lulé, T.; Mandier, C.; Glais, A.; Roffet, G.; Monteith, R.; Deschamps, B. High Performance 1.3 MPix HDR Automotive Image Sensor. In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015. [Google Scholar]
- Gyongy, I.; Al Abbas, T.; Dutton, N.A.W.; Henderson, R.K. Object Tracking and Reconstruction with a Quanta Image Sensor. In Proceedings of the International Image Sensors Workshop, Hiroshima, Japan, 30 May–2 June 2017. [Google Scholar]
- Perenzoni, M.; Massari, N.; Perenzoni, D.; Gasparini, L.; Stoppa, D. A 160 × 120 Pixel Analog-Counting Single-Photon Imager with Time-Gating and Self-Referenced Column-Parallel A/D Conversion for Fluorescence Lifetime Imaging. IEEE J. Solid-State Circuits 2016, 51, 155–167. [Google Scholar]
- Aull, B.; Schuette, D.; Young, D.; Craig, D.; Felton, B.; Warner, K. A Study of Crosstalk in a 256 × 256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes. IEEE Sens. J. 2015, 15, 2123–2132. [Google Scholar] [CrossRef]
- Haruta, T.; Nakajima, T.; Hashizume, J.; Umebayashi, T.; Takahashi, H.; Taniguchi, K.; Kuroda, M.; Sumihiro, H.; Enoki, K.; Yamasaki, T.; et al. 4.6 A 1/2.3 inch 20 Mpixel 3-layer stacked CMOS Image Sensor with DRAM. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 76–77. [Google Scholar]
Exposure | SNRH (dB) | DRmax (dB) |
---|---|---|
10 µs | 50.5 | 72 |
10 µs + 1 µs | 51.8 | 90 |
10 µs +1 µs + 0.1 µs | 52 | 109 |
Exposure | SNRH (dB) | DRmax (dB) |
---|---|---|
10 µs | 50.7 | 75 |
10 µs + 1 µs | 50.9 | 92.7 |
10 µs +1 µs + 0.1 µs | 51.1 | 115.8 |
Ratio | SNRH (dB) | DRmax (dB) |
---|---|---|
2 | 55 | 108 |
4 | 53.5 | 108 |
6 | 52.7 | 108 |
8 | 52.2 | 108 |
10 | 52 | 109 |
This Work | [23] | [1,12] | [29] | [24] | [15] | |
---|---|---|---|---|---|---|
Pixel Pitch | 8.25 | 8 | 7.83 | 15 | 24 | 3.8 |
Circuit Type | Digital Ripple Counter | NMOS Dynamic Memory | Digital Ripple Counter | Analogue Counter | NMOS Static Memory | APD + CIS APS |
Oversampling in-pixel | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ |
Exposures In-Pixel | 3 | 1 | 2 | 1 | 1 | 1 |
Counter Depth | 4b | 1b | 6b | 7b | 1b | 1b |
Summing in-pixel per Exposure | 15 | 1 | 63 | 80 | 1 | 1 |
Pixel data output width | 12b | 1b | 12b | 7b | 1b | 1b |
Projection to 1MPix (1024 × 1024) 3D Stacked QIS with >100 dB HDR | ||||||
Array Dimension (µm) | 8448 | 8192 | 8017 | 15,360 | 24,576 | 3891 |
QIS Output Frame Rate (FPS) | 240 | 240 | 240 | 240 | 240 | 240 |
Total OSR per Frame | 256 | 256 | 256 | 256 | 256 | 256 |
Sensor Field Rate (FiPS) * | 4096 | 184,320 | 2926 ** | 2304 | 184,320 | 184,320 |
Interface Data Rate (Gpbs) | 48 | 180 | 34.3 | 15.8 | 180 | 180 |
In-pixel Data Compression Ratio *** | 3.75 | None | 10.5 | 11.4 | None | None |
Motion Artifact | Best–V.Low | High | Low | V.High | High | High |
Multiple HDR exposures in-pixel | ✓ | ✕ | ✓ | ✕ | ✕ | ✕ |
CMOS Tech‘ Node (nm) for Digital Logic | Circuit Pixel Pitch (µm) | 2D Monolithic | 3D Stacked | Single Exposure Linear Counter | Dual Exposure HDR | Triple Exposure HDR | |||
---|---|---|---|---|---|---|---|---|---|
Max Count | Counter Bit Depth | Max Count | Counter Bit Depth | Max Count | Counter Bit Depth | ||||
This Work, [1,12] | |||||||||
40 | 7.83–8.25 | ✓ | ✓ | 4095 1 | 12 | 63 | 6 | 15 | 4 |
Future Projected Trends | |||||||||
32 | 6 | ✓ | ✓ | 16,383 1 | 14 | 127 | 7 | 15 | 4 |
22 | 3 | ✓ | 127 | 7 | 7 | 3 | 3 | 2 | |
16 | 1.5 | ✓ | 7 | 3 | 1 | 1 | 1 | 1 | |
11 | 1.0 | ✓ | 7 | 3 | 1 | 1 | 1 | 1 | |
11 | 0.75 | ✓ | 1 | 1 | - | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutton, N.A.W.; Al Abbas, T.; Gyongy, I.; Mattioli Della Rocca, F.; Henderson, R.K. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors. Sensors 2018, 18, 1166. https://doi.org/10.3390/s18041166
Dutton NAW, Al Abbas T, Gyongy I, Mattioli Della Rocca F, Henderson RK. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors. Sensors. 2018; 18(4):1166. https://doi.org/10.3390/s18041166
Chicago/Turabian StyleDutton, Neale A.W., Tarek Al Abbas, Istvan Gyongy, Francescopaolo Mattioli Della Rocca, and Robert K. Henderson. 2018. "High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors" Sensors 18, no. 4: 1166. https://doi.org/10.3390/s18041166
APA StyleDutton, N. A. W., Al Abbas, T., Gyongy, I., Mattioli Della Rocca, F., & Henderson, R. K. (2018). High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors. Sensors, 18(4), 1166. https://doi.org/10.3390/s18041166