Complex Fiber Micro-Knots
Abstract
:1. Introduction
2. A Simple Micro-Knot
3. Complex Micro-Knots
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, X.; Tong, L.; Vienne, G.; Guo, X.; Tsao, A.; Yang, Q.; Yang, D. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett. 2006, 88, 223501. [Google Scholar] [CrossRef]
- Sumetsky, M. Optical fiber microcoil resonator. Opt. Express 2004, 12, 2303–2316. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Rao, Y.J.; Chen, Y.H.; Gong, Y. Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators. Opt. Express 2009, 17, 18142–18147. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, T.; Rao, Y.; Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 2011, 155, 258–263. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Li, G.; Tong, L. Modeling optical microfiber loops for seawater sensing. Appl. Opt. 2012, 51, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Harun, S.; Damanhuri, S.; Jasim, A.; Tio, C.; Ahmad, H. Current sensor based on microfiber knot resonator. Sens. Actuators A Phys. 2011, 167, 60–62. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt. Lett. 2012, 37, 5187–5189. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zeng, X.; Rao, Y.J.; Hou, C.L.; Yang, G.G. MOEMS accelerometer based on microfiber knot resonator. In Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 9 October 2009; p. 75036U. [Google Scholar]
- Jiang, X.; Chen, Y.; Vienne, G.; Tong, L. All-fiber add-drop filters based on microfiber knot resonators. Opt. Lett. 2007, 32, 1710–1712. [Google Scholar] [CrossRef] [PubMed]
- Logvinova, A.; Gottlieb, G.; Shahal, S.; Fridman, M.; Linzon, Y. Dynamical range and stability enhancement in electrically fused microknot optical resonators. Appl. Opt. 2017, 56, 5726–5730. [Google Scholar] [CrossRef] [PubMed]
- Aray, A.; Chiavaioli, F.; Arjmand, M.; Trono, C.; Tombelli, S.; Giannetti, A.; Cennamo, N.; Soltanolkotabi, M.; Zeni, L.; Baldini, F. SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. J. Biophotonics 2016, 9, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Farnesi, D.; Chiavaioli, F.; Baldini, F.; Righini, G.; Soria, S.; Trono, C.; Conti, G.N. Quasi-distributed and wavelength selective addressing of optical micro-resonators based on long period fiber gratings. Opt. Express 2015, 23, 21175–21180. [Google Scholar] [CrossRef] [PubMed]
- Chiavaioli, F.; Baldini, F.; Tombelli, S.; Trono, C.; Giannetti, A. Biosensing with optical fiber gratings. Nanophotonics 2017, 6, 663–679. [Google Scholar] [CrossRef]
- Safavi-Naeini, A.; Groblacher, S.; Hill, J.; Chan, J.; Aspelmeyer, M.; Painer, O. Squeezed light from a silicon micromechanical resonator. Nature 2013, 500, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Linzon, Y.; Joe, D.; Barton, R.; Ilic, R.; Krylov, S.; Parpia, J.; Craighead, H. Real-time synchronous imaging of electromechanical resonator mode and equilibrium profiles. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 23–27 January 2011; pp. 485–488. [Google Scholar]
- Mahajne, S.; Guetta, D.; Lulinsky, S.; Krylov, S.; Linzon, Y. Liquid mass sensing using resonating microplates under harsh drop and spray conditions. Phys. Res. Int. 2014, 2014, 320324. [Google Scholar] [CrossRef]
- Tong, L. Brief introduction to optical microfibers and nanofibers. Front. Optoelectron. China 2010, 3, 54–60. [Google Scholar] [CrossRef]
- Tong, L.; Gattass, R.R.; Ashcom, J.B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 426, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, A.; Harun, S.; Ahmad, F.; Muhammad, M.; Jasim, A.; Ahmad, H. Demonstration of microfiber hybrid Mach–Zehnder and knot resonator structure. Microw. Opt. Technol. Lett. 2013, 55, 100–102. [Google Scholar] [CrossRef]
- Audoly, B.; Clauvelin, N.; Neukirch, S. Elastic knots. Phys. Rev. Lett. 2007, 99, 164301. [Google Scholar] [CrossRef] [PubMed]
- Shahal, S.; Duadi, H.; Fridman, M. High-order modes micro-knot excited by a long-period fiber grating. Sensors 2017, 17, 2490. [Google Scholar] [CrossRef] [PubMed]
- Chuo, S.M.; Chen, J.H.; Wang, L.A. Feasibility study of making patterned optical devices based on microfibers for optical interconnect applications. IEEE Photonics Technol. Lett. 2010, 22, 395–397. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Q.; Li, B.; Luo, Y.; Lu, W.; Liu, D.; Shum, P.P.; Zhang, L. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect. Opt. Express 2015, 23, 6662–6672. [Google Scholar] [CrossRef] [PubMed]
- Sumetsky, M. Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators. J. Lightw. Technol. 2008, 26, 21–27. [Google Scholar] [CrossRef]
- Shen, X.; Li, X.; Hong, Z.; Shen, J.; Yu, X.; Zhou, M.; Chen, J. An all-fiber resonator composed of single-channel side-coupled microresonator sequence. In Proceedings of the 2010 19th Annual Wireless and Optical Communications Conference (WOCC), Shanghai, China, 14–15 May 2010; pp. 1–4. [Google Scholar]
- Shahal, S.; Klein, A.; Masri, G.; Fridman, M. Fused fiber micro-knots. Appl. Opt. 2016, 55, 4538–4541. [Google Scholar] [CrossRef] [PubMed]
- Shahal, S.; Klein, A.; Masri, G.; Duadi, H.; Fridman, M. Long period fiber gratings with off-resonance spectral response based on mechanical oscillations. J. Opt. Soc. Am. A 2017, 34, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Masri, G.; Shahal, S.; Klein, A.; Duadi, H.; Fridman, M. Polarization dependence of asymmetric off-resonance long period fiber gratings. Opt. Express 2016, 24, 29843–29851. [Google Scholar] [CrossRef] [PubMed]
- Shriver-Lake, L.C.; Anderson, G.P.; Golden, J.P.; Ligler, F.S. The effect of tapering the optical fiber on evanescent wave measurements. Anal. Lett. 1992, 25, 1183–1199. [Google Scholar] [CrossRef]
- Siegman, A.E. Lasers; University Science Books: Herndon, VA, USA, 1986; pp. 38–43. [Google Scholar]
- Fabiny, L.; Colet, P.; Roy, R.; Lenstra, D. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys. Rev. A 1993, 47, 4287–4296. [Google Scholar] [CrossRef] [PubMed]
- Fridman, M.; Nixon, M.; Ronen, E.; Friesem, A.A.; Davidson, N. Phase locking of two coupled lasers with many longitudinal modes. Opt. Lett. 2010, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Nixon, M.; Fridman, M.; Ronen, E.; Friesem, A.A.; Davidson, N. Phase locking of two fiber lasers with time-delayed coupling. Opt. Lett. 2009, 34, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- Fridman, M.; Eckhouse, V.; Davidson, N.; Friesem, A.A. Efficient coherent addition of fiber lasers in free space. Opt. Lett. 2007, 32, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Fridman, M.; Eckhouse, V.; Davidson, N.; Friesem, A.A. Simultaneous coherent and spectral addition of fiber lasers. Opt. Lett. 2008, 33, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Ronen, E.; Fridman, M.; Nixon, M.; Friesem, A.; Davidson, N. Phase locking of lasers with intracavity polarization elements. Opt. Lett. 2008, 33, 2305–2307. [Google Scholar] [CrossRef] [PubMed]
- Eckhouse, V.; Fridman, M.; Davidson, N.; Friesem, A.A. Phase locking and coherent combining of high-order-mode fiber lasers. Opt. Lett. 2008, 33, 2134–2136. [Google Scholar] [CrossRef] [PubMed]
- Fridman, M.; Nixon, M.; Grinvald, E.; Davidson, N.; Friesem, A.A. Real-time measurement of space-variant polarizations. Opt. Express 2010, 18, 10805–10812. [Google Scholar] [CrossRef] [PubMed]
Type | Picture | FSR | Q-Factor | Amplitude | Losses |
---|---|---|---|---|---|
simple knot | 0.87 nm | 4600 | 5.5 dB | 10 dB | |
double twist | 0.66 nm | 11,000 | 9 dB | 20 dB | |
double knot | 0.2 nm | 30,000 | 8 dB | 30 dB | |
figure-eight | 0.63 nm | 9000 | 8 dB | 45 dB | |
tangled | 0.9 nm | 1500 | 3 dB | 55 dB |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahal, S.; Duadi, H.; Linzon, Y.; Fridman, M. Complex Fiber Micro-Knots. Sensors 2018, 18, 1273. https://doi.org/10.3390/s18041273
Shahal S, Duadi H, Linzon Y, Fridman M. Complex Fiber Micro-Knots. Sensors. 2018; 18(4):1273. https://doi.org/10.3390/s18041273
Chicago/Turabian StyleShahal, Shir, Hamootal Duadi, Yoav Linzon, and Moti Fridman. 2018. "Complex Fiber Micro-Knots" Sensors 18, no. 4: 1273. https://doi.org/10.3390/s18041273
APA StyleShahal, S., Duadi, H., Linzon, Y., & Fridman, M. (2018). Complex Fiber Micro-Knots. Sensors, 18(4), 1273. https://doi.org/10.3390/s18041273