Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Selection of the LC Resonance Magnetic Sensor
2.2. Sensitivity Analysis of the LC Resonance Magnetic Sensor
2.3. Manual Interference Sensor Noise Test Method
2.4. LF-NMR Experimental Method
3. Results
3.1. The Voltage Noise Comparation with or without Environmental Interference
3.2. The Noise Test and Analysis of the Sensor with Manual Interference
3.3. LF-NMR Experiment using the LC Resonance Magnetic Sensor
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, C.; Müller-Petke, M.; Lin, J.; Yaramanci, U. Imaging shallow three dimensional water-bearing structures using magnetic resonance tomography. J. Appl. Geophys. 2015, 116, 17–27. [Google Scholar] [CrossRef]
- Schirov, M.; Legchenko, A.; Creer, G. A new direct non-invasive groundwater detection technology for Australia. Explor. Geophys. 1991, 22, 333–338. [Google Scholar] [CrossRef]
- Bloch, F.; Hansen, W.W.; Packard, M. The Nuclear Induction Experiment. Phys. Rev. 1946, 70, 474–485. [Google Scholar] [CrossRef]
- Legchenko, A.; Valla, P. A review of the basic principles for proton magnetic resonance sounding measurements. J. Appl. Geophys. 2002, 50, 3–19. [Google Scholar] [CrossRef]
- Lee, S.K.; Mössle, M.; Myers, W.; Kelso, N.; Trabesinger, A.H.; Pines, A.; Clarke, J. Squid-detected MRI at 132 microT with T1-weighted contrast established at 10 microT-300 mT. Magn. Reson. Med. 2005, 53, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.Q.; Zhang, Y.; Krause, H.J.; Braginski, A.I.; Usoskin, A. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio. Rev. Sci. Instrum. 2007, 78, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Bernarding, J.; Buntkowsky, G.; Macholl, S.; Hartwig, S.; Burghoff, M.; Trahms, L. J-coupling nuclear magnetic resonance spectroscopy of liquids in NT fields. J. Am. Chem. Soc. 2006, 128, 714–715. [Google Scholar] [CrossRef] [PubMed]
- Zotev, V.S.; Matlashov, A.N.; Volegov, P.L.; Savukov, I.M.; Espy, M.A.; Mosher, J.C.; Gomez, J.J.; Kraus, R.H., Jr. Microtesla MRI of the human brain combined with MEG. J. Magn. Reson. 2008, 194, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.Q.; Zhang, Y.; Krause, H.J.; Braginski, A.I.; Burghoff, M.; Trahms, L. Nuclear magnetic resonance in the earth’s magnetic field using a nitrogen-cooled superconducting quantum interference device. Appl. Phys. Lett. 2007, 91, 072505. [Google Scholar] [CrossRef]
- Davis, A.C.; Dlugosch, R.; Queitsch, M.; Macnae, J.C.; Stolz, R.; Müller-Petke, M. First evidence of detecting surface nuclear magnetic resonance signals using a compact B-field sensor. Geophys. Res. Lett. 2014, 41, 4222–4229. [Google Scholar] [CrossRef]
- Lin, T.T.; Chen, W.Q.; Du, W.; Zhao, J. Signal acquisition module design for multi-channel surface magnetic resonance sounding system. Rev. Sci. Instrum. 2015, 86, 114702. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Feng, L.B.; Duan, Q.M.; Lin, J.; Yi, X.F.; Jiang, C.D.; Li, S.Y. Research and Realization of Short Dead-Time Surface Nuclear Magnetic Resonance for Groundwater Exploration. IEEE Trans. Instrum. Meas. 2015, 64, 278–287. [Google Scholar]
- Walsh, D.O. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations. J. Appl. Geophys. 2008, 66, 140–150. [Google Scholar] [CrossRef]
- Lin, T.T.; Zhang, Y.; Lee, Y.H. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range. Rev. Sci. Instrum. 2014, 85, 114708. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Du, G.F.; Zhang, J.; Yi, X.F.; Jiang, C.D.; Lin, T.T. Development of a Rigid One-Meter-Side and Cooled Coil Sensor at 77 K for Magnetic Resonance Sounding to Detect Subsurface Water Sources. Sensors 2017, 17, 1362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Teng, F.; Li, S.; Wan, L.; Lin, T.T. Design of a matching network for a high-sensitivity broadband magnetic resonance sounding coil sensor. Sensors 2017, 17, 2463. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Zheng, T.; Yang, X.; Finnerty, M.J.; Handa, S. RF Surface Receive Array Coils: The Art of an LC Circuit. J. Magn. Reson. Imaging 2013, 38, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.G.; Grimes, C.A.; Robbins, C.L.; Singh, R.S. Design and application of a wireless, passive, resonant-circuit environmental monitoring. Sens. Actuators A Phys. 2001, 93, 33–43. [Google Scholar] [CrossRef]
- Mihajlovic, G.; Xiong, P.; Molnar, S.V.; Ohtani, K.; Ohno, H.; Field, M.; Sullivan, G.J. Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Appl. Phys. Lett. 2005, 87, 112502. [Google Scholar] [CrossRef]
- Besse, P.A.; Boero, G.; Demierre, M.; Pott, V.; Popovic, R. Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl. Phys. Lett. 2002, 80, 4199–4201. [Google Scholar] [CrossRef]
- Pollak, V.L.; Slater, R.R. Input Circuits for Pulsed NMR. Rev. Sci. Instrum. 1966, 37, 268–272. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Y.; Krause, H.J.; Xie, X.M.; Braginski, A.I.; Offenhausser, A. Suppression of ringing in the tuned input circuit of a SQUID detector used in low-field NMR measurements. Superconduct. Technol. 2009, 22, 125022. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Zhou, K.; Yu, S.; Wang, P.; Wan, L.; Zhao, J. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals. Sensors 2018, 18, 1335. https://doi.org/10.3390/s18051335
Lin T, Zhou K, Yu S, Wang P, Wan L, Zhao J. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals. Sensors. 2018; 18(5):1335. https://doi.org/10.3390/s18051335
Chicago/Turabian StyleLin, Tingting, Kun Zhou, Sijia Yu, Pengfei Wang, Ling Wan, and Jing Zhao. 2018. "Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals" Sensors 18, no. 5: 1335. https://doi.org/10.3390/s18051335
APA StyleLin, T., Zhou, K., Yu, S., Wang, P., Wan, L., & Zhao, J. (2018). Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals. Sensors, 18(5), 1335. https://doi.org/10.3390/s18051335