Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling
Abstract
:1. Introduction
2. The Arenoso Reservoir
3. The High Precision Geodetic Monitoring System
3.1. Settlement Monitoring
3.2. Horizontal Displacements
4. Numerical Modeling
4.1. Geotechnical Features
4.2. Results of the Numerical Modeling
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hosbas, G.; Kartal, F.; Ersoy, N.; Erküçük, G.; Uzel, T.; Eren, K. Surveillance of Oymapinar Dam deformations by means of geodetic control network. In Proceedings of the 1st Turkish International Symposium on Deformations, Istanbul, Turkey, 5–9 September 1994; pp. 491–502. [Google Scholar]
- Barzaghi, R.; Pinto, L.; Monaci, R. The monitoring of gravity dams: Two tests in Sardinia, Italy. In Proceedings of the FIG Working Week (Session TS01F), Rome, Italy, 6–7 May 2012; pp. 1–16. [Google Scholar]
- Yi, T.H.; Li, H.N.; Gu, M. Recent research and applications of GPS-based monitoring technology for high-rise structures. Struct. Control Health Monit. 2012, 20, 649–670. [Google Scholar] [CrossRef]
- Grenerczy, G.; Wegmüller, U. Persistent scatterer interferometry analysis of the embankment failure of a red mud reservoir using ENVISAT ASAR data. Nat. Hazards 2011, 59, 1047–1053. [Google Scholar] [CrossRef]
- Di Martire, D.; Iglesias, R.; Monells, D.; Centolanza, G.; Sica, S.; Ramondini, M.; Calcaterra, D. Comparison between differential SAR interferometry and ground measurements data in the displacement monitoring of the earth-dam of Conza della Campania (Italy). Remote Sens. Environ. 2014, 148, 58–69. [Google Scholar] [CrossRef]
- Milillo, P.; Perissind, D.; Salzere, J.T.; Lundgrenc, P.; Lacavaa, G.; Milillof, G.; Serio, C. Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 221–229. [Google Scholar] [CrossRef]
- Pytharouli, S.I.; Stiros, S.C. Ladon Dam (Greece), Deformation and Reservoir Level Fluctuations: Evidence for a Causative Relationship from the Spectral Analysis of a Geodetic Monitoring Record. Eng. Struct. 1999, 27, 361–370. [Google Scholar] [CrossRef]
- Pytharouli, S.; Kontogianni, V.; Psimoulis, P.; Nickitopoulou, A.; Stiros, S.; Skourtis, C.; Stremmenos, F.; Kountouris, A. Geodetic monitoring of earthfill and concrete dams in Greece. Int. J. Hydropower Dams 2007, 2, 82–85. [Google Scholar]
- Pytharouli, S.I.; Stiros, S.C. Investigation of the parameters controlling the crest settlement of a major earthfill dam based on the threshold correlation analysis. J. Appl. Geod. 2009, 3, 55–62. [Google Scholar] [CrossRef]
- Casaca, J.; Braz, N.; Conde, V. Combined adjustment of angle and distance measurements in a dam monitoring network. Surv. Rev. 2014, 47, 181–184. [Google Scholar] [CrossRef]
- Chrzanowski, A.; Szostak-Chrzanowski, A. Enhancement of deformation modelling in engineering and geosciences by combining deterministic and generalized geometrical analysis. In Proceedings of the Annual Conference of the Canadian Society for Civil Engineering and 11th Canadian Hydrotechnical Conference, Fredericton, NB, Canada, 8–11 June 1993; pp. 479–488. [Google Scholar]
- Szostak-Chrzanowski, A. Interdisciplinary Approach to Deformation Analysis in Engineering, Mining, and Geosciences Projects by Combining Monitoring Surveys with Deterministic Modeling—Part I; Technical Science, Paper and Report, No. 9; University of Warmia and Mazury: Olsztyn, Poland, 2006; pp. 147–172. [Google Scholar]
- Vassilis, G.; Sakellariou, M. Settlemet analysis of the Mornos earth dam (Greece): Evidence from numerical modeling and geodetic monitoring. Eng. Struct. 2008, 30, 3074–3081. [Google Scholar] [CrossRef]
- Yigit, C.E.; Alcay, S.; Ceylan, A. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: Evidence from geodetic data. Geomatics. Nat. Hazards Risk 2016, 7, 1489–1505. [Google Scholar] [CrossRef]
- De Lacy, M.C.; Ramos, M.I.; Gil, A.J.; Franco, O.D.; Herrera, A.M.; Avilés, M.; Domínguez, A.; Chica, J.C. Monitoring of vertical deformations by means high-precision geodetic levelling. Test case: The Arenoso dam (South of Spain). J. Appl. Geod. 2017, 11, 31–41. [Google Scholar] [CrossRef]
- Romero, F.; Bobis, A.; García-Palacios, J.J.; Cruz, D.J. La Presa del Arenoso. Rev. Obras Públicas 2007, 154, 149–160. [Google Scholar]
- LGO 7.0 Online Help Manual. Leica Geo Office: Heerbrugg, Switzerland, 2008. Available online: http://leica-geosystems.com/products/total-stations/software/leica-geo-office (accessed on 27 April 2018).
- Cocard, M.; Kahle, H.-G.; Peter, Y.; Geiger, A.; Veis, G.; Felekis, S.; Paradissis, D.; Billiris, H. New constraints on the rapid crustal motion of the Aegean region: Recent results inferred from GPS measurements (1993–1998) across the West Hellenic Arc, Greece. Earth Planet. Sci. Lett. 1999, 172, 39–47. [Google Scholar] [CrossRef]
- User Manual “Stress-Deformation Modeling with SIGMA/W”, An Engineering Methodology; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2013.
- Spancold (Ed.) Technical guides of safety dams. In Geologic-Geotechnical Studies and Prospecting of Materials; Spancold: Madrid, Spain, 1999. [Google Scholar]
- U.S. Bureau of Reclamation, 2011. Embankment Dams. Design Standards No. 13. Chapter 9: Static Deformation Analysis. Available online: http://www.usbr.gov/tsc/techreferences/designstandards/finalds-pdfs/DS13-9.pdf (accessed on 11 October 2017).
Station | Horizontal Displacement (mm) | Geodetic Azimuth of the Displacement Vector |
---|---|---|
V100 | 4.5 | 65°53′31.8″ |
V300 | 10.3 | 104°33′34.9″ |
V500 | 3.9 | 244°10′43.9″ |
Period | amin (mm) | amean (mm) | amax (mm) | bmin (mm) | bmean (mm) | bmax (mm) | n |
---|---|---|---|---|---|---|---|
February–July 2008 | 1.41 | 2.58 | 2.83 | 1.41 | 2.25 | 2.83 | 17 |
March–July 2013 | 1.35 | 1.50 | 1.95 | 1.11 | 1.25 | 1.59 | 57 |
March 2013–August 2014 | 1.62 | 1.88 | 2.40 | 1.23 | 1.58 | 2.01 | 57 |
March 2013–September 2015 | 1.02 | 1.09 | 1.05 | 0.63 | 0.86 | 1.14 | 57 |
March 2013–September 2016 | 1.02 | 1.08 | 1.26 | 0.63 | 0.73 | 1.14 | 57 |
Soil (Layer) | Material Type | Material Properties | ||||
---|---|---|---|---|---|---|
E × 103 (kN/m2) | V | γ (kN/m3) | C (kN/m2) | φ0 | ||
1 | Clay (nucleus) | 69 | 0.30 | 18.0 | 50 | 27 |
2 | Borrow | 110 | 0.30 | 19.0 | - | 37 |
3 | Dren Filter | 64 | 0.28 | 20 | - | 35 |
4 | Transition | 100 | 0.30 | 22.0 | - | 54 |
5 | Riprap | 150 | 0.25 | 21.0 | - | 50 |
6 | Conglomerate | 1350 | 0.25 | 20 | 15 | 35 |
7 | Riprap | 124 | 0.24 | 22.6 | - | 40 |
8 | Riprap (drainage) | 150 | 0.25 | 21.0 | - | 50 |
9 | Coronation (gravel) | 200 | 0.30 | 20 | - | |
10 | Foundation (bedrock) | 8400 | 0.20 | 26 | - |
Method | C | O | Lines | |||
---|---|---|---|---|---|---|
S | HD | S | HD | |||
FEM | −0.28 | 0.09 | −0.45 | 0.11 | crest (CI and C) | |
−0.16 | 0.02 | −0.26 | 0.02 | berm B | ||
−0.06 | 0.03 | −0.13 | 0.04 | berm A | ||
Geodetic | −0.06 | 0.01 | −0.22 | 0.05 | crest | CI |
−0.10 | 0.04 | −0.17 | 0.05 | C | ||
−0.03 | 0.02 | −0.14 | 0.03 | berm B | ||
−0.01 | 0.01 | −0.07 | 0.02 | berm A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, L.E.; De Lacy, M.C.; Ramos, M.I.; Cano, J.P.; Herrera, A.M.; Avilés, M.; Gil, A.J. Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling. Sensors 2018, 18, 1369. https://doi.org/10.3390/s18051369
Acosta LE, De Lacy MC, Ramos MI, Cano JP, Herrera AM, Avilés M, Gil AJ. Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling. Sensors. 2018; 18(5):1369. https://doi.org/10.3390/s18051369
Chicago/Turabian StyleAcosta, Luis Enrique, M. Clara De Lacy, M. Isabel Ramos, Juan Pedro Cano, Antonio Manuel Herrera, Manuel Avilés, and Antonio José Gil. 2018. "Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling" Sensors 18, no. 5: 1369. https://doi.org/10.3390/s18051369
APA StyleAcosta, L. E., De Lacy, M. C., Ramos, M. I., Cano, J. P., Herrera, A. M., Avilés, M., & Gil, A. J. (2018). Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling. Sensors, 18(5), 1369. https://doi.org/10.3390/s18051369