Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description and Sample Extractions
2.2. Feature Engineering
2.2.1. Statistical Features
2.2.2. Fractal Dimension Features
2.2.3. Entropy Features
2.2.4. Spectral Features
2.3. Experimental Procedure
2.4. Feature Selection
Function BackFS(DataMatrix, ClassLabel): Begin Set = null; while FeatureNum(DataMatrix) > 1: for Feature(i) in DataMatrix: Performance(i) = PerformanceMeasurement(DataMatrix\Feature(i)) remove the jth feature with the largest Performance(j) from DataMatrix add the largest Performance(j) into Set find the largest one in Set, the subset in that iteration is the best one End. |
2.5. Classification Performance Measurement
3. Results
3.1. How the 24 Feature Types Contribute Individually
3.2. Pairwise Orchestration of the 24 Feature Types
3.3. How the Best Model Was Achieved
3.4. The Performance of Models Using Different Classifier
3.5. Predicting an Epilepsy Seizure before It Happens
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mormann, F.; Andrzejak, R.G. Seizure prediction: Making mileage on the long and winding road. Brain 2016, 139 Pt 6, 1625–1627. [Google Scholar] [CrossRef] [PubMed]
- Zandi, A.S.; Javidan, M.; Dumont, G.A.; Tafreshi, R. Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans. Bio-Med. Eng. 2010, 57, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
- Halatchev, V.N. Epidemiology of epilepsy—Recent achievements and future. Folia Med. (Plovdiv) 2000, 42, 17–22. [Google Scholar] [PubMed]
- Senanayake, N.; Roman, G.C. Epidemiology of epilepsy in developing countries. Bull. World Health Organ. 1993, 71, 247–258. [Google Scholar] [PubMed]
- Sakauchi, M.; Oguni, H.; Kato, I.; Osawa, M.; Hirose, S.; Kaneko, S.; Takahashi, Y.; Takayama, R.; Fujiwara, T. Retrospective multiinstitutional study of the prevalence of early death in Dravet syndrome. Epilepsia 2011, 52, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Liebenthal, J.A.; Wu, S.; Rose, S.; Ebersole, J.S.; Tao, J.X. Association of prone position with sudden unexpected death in epilepsy. Neurology 2015, 84, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Escalaya, A.L.; Burneo, J.G. Epilepsy surgery and neurocysticercosis: Assessing the role of the cysticercotic lesion in medically-refractory epilepsy. Epilepsy Behav. 2017, 76, 178–181. [Google Scholar] [CrossRef] [PubMed]
- El Tahry, R.; Wang, I.Z. Failed epilepsy surgery: Is this the end? Acta Neurol. Belg. 2017, 117, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Gadhoumi, K.; Lina, J.M.; Mormann, F.; Gotman, J. Seizure prediction for therapeutic devices: A review. J. Neurosci. Methods 2016, 260, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Tewolde, S.; Oommen, K.; Lie, D.Y.; Zhang, Y.; Chyu, M.C. Epileptic Seizure Detection and Prediction Based on Continuous Cerebral Blood Flow Monitoring—A Review. J. Healthc. Eng. 2015, 6, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Todaro, C.; Marzetti, L.; Valdes Sosa, P.A.; Valdes-Hernandez, P.A.; Pizzella, V. Mapping Brain Activity with Electrocorticography: Resolution Properties and Robustness of Inverse Solutions. Brain Topogr. 2018, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kurt, M.B.; Sezgin, N.; Akin, M.; Kirbas, G.; Bayram, M. The ANN-based computing of drowsy level. Expert Syst. Appl. 2009, 36, 2534–2542. [Google Scholar] [CrossRef]
- Rizvi, S.A.; Tellez Zenteno, J.F.; Crawford, S.L.; Wu, A. Outpatient ambulatory EEG as an option for epilepsy surgery evaluation instead of inpatient EEG telemetry. Epilepsy Behav. Case Rep. 2013, 1, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Bhat, S.; Faust, O.; Adeli, H.; Chua, E.C.; Lim, W.J.; Koh, J.E. Nonlinear Dynamics Measures for Automated EEG-Based Sleep Stage Detection. Eur. Neurol. 2015, 74, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Wong-Kisiel, L.C.; Tovar Quiroga, D.F.; Kenney-Jung, D.L.; Witte, R.J.; Santana-Almansa, A.; Worrell, G.A.; Britton, J.; Brinkmann, B.H. Morphometric analysis on T1-weighted MRI complements visual MRI review in focal cortical dysplasia. Epilepsy Res. 2018, 140, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Flink, R.; Pedersen, B.; Guekht, A.B.; Malmgren, K.; Michelucci, R.; Neville, B.; Pinto, F.; Stephani, U.; Ozkara, C. Guidelines for the use of EEG methodology in the diagnosis of epilepsy. Acta Neurol. Scand. 2002, 106, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, W.; Li, Y.; Luo, M.; Huang, J.; Cui, W.; Huang, C. Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 2017, 19, 222. [Google Scholar] [CrossRef]
- Shunan, L.; Donghui, L.; Bin, D.; Xile, W.; Jiang, W.; Chan, W.-L. A novel feature extraction method for epilepsy EEG signals based on robust generalized synchrony analysis. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 5144–5147. [Google Scholar]
- Polat, K.; Güneş, S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 2007, 187, 1017–1026. [Google Scholar] [CrossRef]
- Murugappan, M.; Murugappan, S. Human emotion recognition through short time Electroencephalogram (EEG) signals using Fast Fourier Transform (FFT). In Proceedings of the 2013 IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), Kuala Lumpur, Malaysia, 8–10 March 2013; pp. 289–294. [Google Scholar]
- Hyvärinen, A.; Ramkumar, P.; Parkkonen, L.; Hari, R. Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. NeuroImage 2010, 49, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.; Lim, J. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 236–243. [Google Scholar] [CrossRef]
- Viglione, S.S.; Walsh, G.O. Proceedings: Epileptic seizure prediction. Electroencephalogr. Clin. Neurophysiol. 1975, 39, 435–436. [Google Scholar] [PubMed]
- Salant, Y.; Gath, I.; Henriksen, O. Prediction of epileptic seizures from two-channel EEG. Med. Biol. Eng. Comput. 1998, 36, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.P.; Axmacher, N.; Mormann, F.; Halgren, E.; Crone, N.E. High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Prog. Neurobiol. 2012, 98, 279–301. [Google Scholar] [CrossRef] [PubMed]
- Moghim, N.; Corne, D.W. Predicting epileptic seizures in advance. PLoS ONE 2014, 9, e99334. [Google Scholar] [CrossRef] [PubMed]
- Litt, B.; Esteller, R.; Echauz, J.; D’Alessandro, M.; Shor, R.; Henry, T.; Pennell, P.; Epstein, C.; Bakay, R.; Dichter, M. Epileptic Seizures May Begin Hours in Advance of Clinical Onset: A Report of Five Patients. In Applications of Intelligent Control to Engineering Systems; Springer: New York, NY, USA, 2009; pp. 225–245. [Google Scholar]
- Kendall, M.G. The advanced Theory of Statistics; Charles Griffin & Company Limited: London, UK, 1943. [Google Scholar]
- Acharya, U.R.; Sree, S.V.; Suri, J.S. Automatic detection of epileptic EEG signals using higher order cumulant features. Int. J. Neural Syst. 2011, 21, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Ocak, H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 2009, 36, 2027–2036. [Google Scholar] [CrossRef]
- Martis, R.J.; Acharya, U.R.; Tan, J.H.; Petznick, A.; Tong, L.; Chua, C.K.; Ng, E.Y. Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int. J. Neural Syst. 2013, 23, 1350023. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, F.; Kose, C. Detection of epileptic seizure from EEG signals by using recurrence quantification analysis. In Proceedings of the 2014 22nd Signal Processing and Communications Applications Conference (SIU), Trabzon, Turkey, 23–25 April 2014; pp. 1387–1390. [Google Scholar]
- Golmohammadi, M.; Shah, V.; Lopez, S.; Ziyabari, S.; Yang, S.; Camaratta, J.; Obeid, I.; Picone, J. The TUH EEG Seizure Corpus. In Proceedings of the American Clinical Neurophysiology Society Annual Meeting, Phoenix, AZ, USA, 8–12 February 2017; p. 1. [Google Scholar]
- Harati, A.; Lopez, S.; Obeid, I.; Picone, J.; Jacobson, M.; Tobochnik, S. The TUH EEG CORPUS: A big data resource for automated EEG interpretation. In Proceedings of the 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 13 December 2014; pp. 1–5. [Google Scholar]
- Acharya, J.N.; Hani, A.J.; Thirumala, P.D.; Tsuchida, T.N. American Clinical Neurophysiology Society Guideline 3: A Proposal for Standard Montages to Be Used in Clinical EEG. J. Clin. Neurophysiol. 2016, 33, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Golmohammadi, M.; Ziyabari, S.; Von Weltin, E.; Obeid, I.; Picone, J. Optimizing channel selection for seizure detection. In Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 2 December 2017; pp. 1–5. [Google Scholar]
- Pearson, B.; Fox-Kemper, B. Log-Normal Turbulence Dissipation in Global Ocean Models. Phys. Rev. Lett. 2018, 120, 094501. [Google Scholar] [CrossRef] [PubMed]
- Gandhamal, A.; Talbar, S.; Gajre, S.; Razak, R.; Hani, A.F.M.; Kumar, D. Fully automated subchondral bone segmentation from knee MR images: Data from the Osteoarthritis Initiative. Comput. Biol. Med. 2017, 88, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Li, Y.; Yi, Y.; Cheng, W.; Du, H. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications. Opt. Express 2017, 25, 24630–24638. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, D.; Ouyang, G.; Wang, Y.; Voss, L.J.; Sleigh, J.W.; Li, X. Multiscale rescaled range analysis of EEG recordings in sevoflurane anesthesia. Clin. Neurophysiol. 2012, 123, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Wang, C.; Chen, Y.; Wang, W.; Du, J. Long-range temporal correlations of broadband EEG oscillations for depressed subjects following different hemispheric cerebral infarction. Cogn. Neurodyn. 2017, 11, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, B. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [Google Scholar] [CrossRef]
- Herrera, L.J.; Fernandes, C.M.; Mora, A.M.; Migotina, D.; Largo, R.; Guillen, A.; Rosa, A.C. Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification. Int. J. Neural Syst. 2013, 23, 1350012. [Google Scholar] [CrossRef] [PubMed]
- Cecchin, T.; Ranta, R.; Koessler, L.; Caspary, O.; Vespignani, H.; Maillard, L. Seizure lateralization in scalp EEG using Hjorth parameters. Clin. Neurophysiol. 2010, 121, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Pennini, F.; Plastino, A. Fisher’s information and the analysis of complex signals. Phys. Lett. A 1999, 256, 173–180. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- McKay, G.J.; Paterson, E.N.; Maxwell, A.P.; Cardwell, C.C.; Wang, R.; Hogg, S.; MacGillivray, T.J.; Trucco, E.; Doney, A.S. Retinal microvascular parameters are not associated with reduced renal function in a study of individuals with type 2 diabetes. Sci. Rep. 2018, 8, 3931. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.; Paeske, L.; Kalev, K.; Aarma, K.; Lehtmets, A.; Oopik, P.; Lass, J.; Hinrikus, H. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Programs Biomed. 2018, 155, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Petrosian, A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In Proceedings of the Eighth IEEE Symposium on Computer-Based Medical Systems, Lubbock, TX, USA, 9–10 June 1995; pp. 212–217. [Google Scholar]
- Khoa, T.Q.D.; Ha, V.Q.; Toi, V.V. Higuchi fractal properties of onset epilepsy electroencephalogram. Comput. Math. Methods Med. 2012, 2012, 461426. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; Mediavilla, Á.; Hornero, R.; Abásolo, D.; Fernández, A. Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Med. Eng. Phys. 2009, 31, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anier, A.; Lipping, T.; Melto, S.; Hovilehto, S. Higuchi fractal dimension and spectral entropy as measures of depth of sedation in intensive care unit. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 526–529. [Google Scholar]
- Upadhyay, R.; Padhy, P.; Kankar, P. A comparative study of feature ranking techniques for epileptic seizure detection using wavelet transform. Comput. Electr. Eng. 2016, 53, 163–176. [Google Scholar] [CrossRef]
- Chu, W.L.; Huang, M.W.; Jian, B.L.; Cheng, K.S. Analysis of EEG entropy during visual evocation of emotion in schizophrenia. Ann. Gen. Psychiatry 2017, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.T.; Lee, C.Y.; Liu, C.C.; Liu, A.B. Multiscale cross-approximate entropy analysis as a measurement of complexity between ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects. Comput. Math. Methods Med. 2013, 2013, 231762. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.J.; Penny, W.; Rezek, I. Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing. Med. Biol. Eng. Comput. 1999, 37, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Inouye, T.; Shinosaki, K.; Sakamoto, H.; Toi, S.; Ukai, S.; Iyama, A.; Katsuda, Y.; Hirano, M. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 204–210. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, H.; Feng, Y. Improvement of high-power laser performance for super-smooth optical surfaces using electrorheological finishing technology. Appl. Opt. 2017, 56, 9822–9829. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, J.; Yang, W.; Shu, Y.; Wei, Z.; Zheng, W.; Feng, X.; Zhou, F. An OMIC biomarker detection algorithm TriVote and its application in methylomic biomarker detection. Epigenomics 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Zhou, M.; Luo, Y.; Meng, Q.; Mai, G.; Ma, D.; Wang, G.; Zhou, F. McTwo: A two-step feature selection algorithm based on maximal information coefficient. BMC Bioinform. 2016, 17, 142. [Google Scholar] [CrossRef] [PubMed]
- Filip, S.; Zoidakis, J.; Vlahou, A.; Mischak, H. Advances in urinary proteome analysis and applications in systems biology. Bioanalysis 2014, 6, 2549–2569. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Dai, D.-Q.; Shi, Y.; Yan, H.; Zhang, X.-F. Biomarker identification and cancer classification based on microarray data using laplace naive bayes model with mean shrinkage. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 1649–1662. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, S.I.; Liparas, D.; Tsolaki, M.N.; Alzheimer’s Disease Neuroimaging Initiative. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) database. J. Neurosci. Methods 2017, 302, 14–23. [Google Scholar] [PubMed]
- Ternès, N.; Rotolo, F.; Michiels, S. biospear: An R package for biomarker selection in penalized Cox regression. Bioinformatics 2017, 34, 112–113. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Paredes, A.; Alonso, G.A.; Cabrera, E.; Cuevas-Valencia, R. Simultaneous Gene Selection and Weighting in Nearest Neighbor Classifier for Gene Expression Data. In Proceedings of the International Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, 26–28 April 2017; Springer: Cham, Switzerland, 2017; pp. 372–381. [Google Scholar]
- Fergus, P.; Hussain, A.; Hignett, D.; Al-Jumeily, D.; Abdel-Aziz, K.; Hamdan, H. A machine learning system for automated whole-brain seizure detection. Appl. Comput. Inform. 2016, 12, 70–89. [Google Scholar] [CrossRef]
- Thodoroff, P.; Pineau, J.; Lim, A. Learning robust features using deep learning for automatic seizure detection. In Proceedings of the Machine Learning for Healthcare Conference, Los Angeles, CA, USA, 19–20 August 2016; pp. 178–190. [Google Scholar]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Boil. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kiral-Kornek, I.; Roy, S.; Nurse, E.; Mashford, B.; Karoly, P.; Carroll, T.; Payne, D.; Saha, S.; Baldassano, S.; O'Brien, T.; et al. Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System. EBioMedicine 2018, 27, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kıymık, M.K.; Güler, I.; Dizibüyük, A.; Akın, M. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 2005, 35, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ouyang, G. Nonlinear similarity analysis for epileptic seizures prediction. Nonlinear Anal. Theory Methods Appl. 2006, 64, 1666–1678. [Google Scholar] [CrossRef]
- Güler, N.F.; Übeyli, E.D.; Güler, I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 2005, 29, 506–514. [Google Scholar] [CrossRef]
- Polat, K.; Güneş, S. Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst. Appl. 2008, 34, 2039–2048. [Google Scholar] [CrossRef]
- Choe, S.-H.; Chung, Y.G.; Kim, S.-P. Statistical spectral feature extraction for classification of epileptic EEG signals. In Proceedings of the 2010 International Conference on Machine Learning and Cybernetics (ICMLC), Qingdao, China, 11–14 July 2010; pp. 3180–3185. [Google Scholar]
- Fu, K.; Qu, J.; Chai, Y.; Zou, T. Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed. Signal Process. Control 2015, 18, 179–185. [Google Scholar] [CrossRef]
- Hassan, A.R.; Siuly, S.; Zhang, Y. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput. Methods Programs Biomed. 2016, 137, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, W.; Zhang, T. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed. Signal Process. Control 2017, 31, 357–365. [Google Scholar] [CrossRef]
- Janjarasjitt, S. Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM. Med. Boil. Eng. Comput. 2017, 55, 1743–1761. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Bai, L.; Woo, W.L.; Tian, G.Y.; Cheng, Y. Automatic defect identification of eddy current pulsed thermography using single channel blind source separation. IEEE Trans. Instrum. Meas. 2014, 63, 913–922. [Google Scholar] [CrossRef]
- Gao, B.; Yin, A.; Wang, Y.; Tian, G.; Woo, W.; Liu, H. Thermography spatial-transient-stage tensor model and materal property characterization. In Proceedings of the 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing (FENDT), Chengdu, China, 20–23 June 2014; pp. 199–203. [Google Scholar]
- Direito, B.; Teixeira, C.A.; Sales, F.; Castelo-Branco, M.; Dourado, A. A Realistic Seizure Prediction Study Based on Multiclass SVM. Int. J. Neural Syst. 2017, 27, 1750006. [Google Scholar] [CrossRef] [PubMed]
- So, R.Q.; Krishna, V.; King, N.K.K.; Yang, H.; Zhang, Z.; Sammartino, F.; Lozano, A.M.; Wennberg, R.A.; Guan, C. Prediction and detection of seizures from simultaneous thalamic and scalp electroencephalography recordings. J. Neurosurg. 2017, 126, 2036–2044. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.Z.; Paul, M. Seizure Prediction Using Undulated Global and Local Features. IEEE Trans. Bio-Med. Eng. 2017, 64, 208–217. [Google Scholar] [CrossRef] [PubMed]
Montage | Name | Ref1 | Ref2 |
---|---|---|---|
0 | FP1-F7 | FP1 | F7 |
1 | F7-T3 | F7 | T3 |
2 | T3-T5 | T3 | T5 |
3 | T5-O1 | T5 | O1 |
4 | FP2-F8 | FP2 | F8 |
5 | F8-T4 | F8 | T4 |
6 | T4-T6 | T4 | T6 |
7 | T6-O2 | T6 | O2 |
8 | A1-T3 | A1 | T3 |
9 | T3-C3 | T3 | C3 |
10 | C3-CZ | C3 | CZ |
11 | CZ-C4 | CZ | C4 |
12 | C4-T4 | C4 | T4 |
13 | T4-A2 | T4 | A2 |
14 | FP1-F3 | FP1 | F3 |
15 | F3-C3 | F3 | C3 |
16 | C3-P3 | C3 | P3 |
17 | P3-O1 | P3 | O1 |
18 | FP2-F4 | FP2 | F4 |
19 | F4-C4 | F4 | C4 |
20 | C4-P4 | C4 | P4 |
21 | P4-O2 | P4 | O2 |
Family | Type | Description | FpC |
---|---|---|---|
Statistical | Mean | Average | 5 |
Crest | Maximum value | 5 | |
Trough | Minimum value | 5 | |
Var | Variance | 5 | |
Skw | Skewness | 5 | |
Kurt | Kurtosis | 5 | |
Peak | Peak value | 5 | |
RMS | Root Mean Square | 5 | |
PAPR | Peak-to-Average Power Ratio | 5 | |
FFac | Form Factor | 5 | |
TotVar | Total Variation | 5 | |
HuExp | Hurst Exponent | 5 | |
DFA | Detrended Fluctuation Analysis | 5 | |
HMob | Hjorth Parameters: Mobility | 5 | |
HComp | Hjorth Parameters: Complexity | 5 | |
FInfo | Fisher information | 5 | |
Fractal | MFD | Mandelbrot Fractal Dimension | 5 |
PFD | Petrosian Fractal Dimension | 5 | |
HFD | Higuchi Fractal Dimension | 5 | |
Entropy | SampEn | Sample Entropy | 5 |
PeEn | Permutation Entropy | 5 | |
SVDEn | SVD Entropy | 5 | |
SEn | Spectral Entropy | 5 | |
Spectral | PSI_RIR | Power Spectral Intensity, and the relative intensity Ratio | 12 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, S.; Liu, Y.; Zhang, Y.; Han, B.; Zhou, F. Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals. Sensors 2018, 18, 1372. https://doi.org/10.3390/s18051372
Zhang Y, Yang S, Liu Y, Zhang Y, Han B, Zhou F. Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals. Sensors. 2018; 18(5):1372. https://doi.org/10.3390/s18051372
Chicago/Turabian StyleZhang, Yinda, Shuhan Yang, Yang Liu, Yexian Zhang, Bingfeng Han, and Fengfeng Zhou. 2018. "Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals" Sensors 18, no. 5: 1372. https://doi.org/10.3390/s18051372
APA StyleZhang, Y., Yang, S., Liu, Y., Zhang, Y., Han, B., & Zhou, F. (2018). Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals. Sensors, 18(5), 1372. https://doi.org/10.3390/s18051372