Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore
Abstract
:1. Introduction
2. Experimental Section
2.1. Apparatus and Chemicals
2.2. Synthesis of the Ionophore
2.2.1. 1-(2-Hydroxyethoxy)dodecan-2-ol [rac-7]
2.2.2. 2-(2-{[2-(Carboxymethoxy)dodecyl]oxy}ethoxy)acetic Acid [rac-8]
2.2.3. Methyl 2-(2-{[2-(2-methoxy-2-oxoethoxy)dodecyl]oxy}ethoxy)acetate [rac-9]
2.2.4. 2-(2-{[2-(2-Hydroxyethoxy)dodecyl]oxy}ethoxy)ethan-1-ol [rac-10]
2.2.5. 1-Methyl-4-[(2-{[1-(2-{2-[(4-methylbenzenesulfonyl)oxy]ethoxy}ethoxy)dodecan-2-yl]oxy}ethoxy)sulfonyl]benzene [rac-11]
2.2.6. 10-Decyl-6,9,12,15,18-pentaoxa-25-azatetracyclo[21.3.1.05,26.019,24]heptacosa-1,3,5(26),19(24),20,22-hexaen-27-one [rac-4]
2.3. Preparation of Plasticized PVC Membranes
2.4. Potentiometric Measurement
3. Results and Discussion
3.1. Spectrophotometric Studies of Ionophore rac-4
3.2. Potentiometric Characterization of the Electrode Membranes Containing Ionophore rac-4
3.3. Response and Lifetime
3.4. Effect on pH and Adding Organic Solvents
3.5. Analytical Application of the Membrane Electrode under Competitive Conditions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Lead: Environmental aspects. In Environmental Health Criteria No. 85; World Health Organization: Geneva, Switzerland, 1989; pp. 85–106. ISBN 9241542853. [Google Scholar]
- Quinn, M.J.; Sherlock, J.C. The correspondence between U.K. ‘action levels’ for lead in blood and in water. Food Addit. Contam. 1990, 7, 387–424. [Google Scholar] [CrossRef] [PubMed]
- Schock, M.R. Causes of temporal variability of lead in domestic plumbing systems. Environ. Monit. Assess. 1990, 15, 59–82. [Google Scholar] [CrossRef] [PubMed]
- Grant, L.D. Lead and compounds. In Environmental Toxicants: Human Exposures and Their Health Effects, 3rd ed.; Lippmann, M., Ed.; Wiley-Interscience: Hoboken, NJ, USA, 2009; Chapter 20; ISBN 978-0-471-79335-9. [Google Scholar]
- Needleman, H. Lead poisoning. Annu. Rev. Med. 2004, 55, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.M.; Eldin, T.A.S.; Hassan, M.A.; El-Anadouli, B.E. Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures. Arab. J. Chem. 2017, 10, 683–690. [Google Scholar] [CrossRef]
- Shakir, I.K.; Husein, B.I. Lead removal from industrial wastewater by electrocoagulation process. Iraqi J. Chem. Petrol. Eng. 2009, 10, 35–42. [Google Scholar]
- Kemper, T.; Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 2002, 36, 2742–2747. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.T.; Kim, J.S. Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev. 2010, 110, 6280–6301. [Google Scholar] [CrossRef] [PubMed]
- Forzani, E.S.; Zhang, H.; Chen, W.; Tao, N. Detection of heavy metal ions in drinking water using a high-resolution differential surface Plasmon resonance sensor. Environ. Sci. Technol. 2005, 39, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Tüzen, M. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem. J. 2003, 74, 289–297. [Google Scholar] [CrossRef]
- Szalay, L.; Farkas, V.; Vass, E.; Hollósi, M.; Móczár, I.; Pintér, Á.; Huszthy, P. Synthesis and selective lead(II) binding of achiral and enantiomerically pure chiral acridono-18-crown-6 ether type ligands. Tetrahedron Asymmetry 2004, 15, 1487–1493. [Google Scholar] [CrossRef]
- Liu, C.W.; Huang, C.C.; Chang, H.T. Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal. Chem. 2009, 81, 2383–2387. [Google Scholar] [CrossRef] [PubMed]
- Ohki, A.; Kim, J.S.; Suzuki, Y.; Hayashita, T.; Maeda, S. Lead-selective poly(vinyl chloride) membrane electrodes based on acyclic dibenzopolyether diamides. Talanta 1997, 44, 1131–1135. [Google Scholar] [CrossRef]
- Abbaspour, A.; Tavakol, F. Lead-selective electrode by using benzyl disulphide as ionophore. Anal. Chim. Acta 1999, 378, 145–149. [Google Scholar] [CrossRef]
- Reza, P.H.; Forghaniha, A.; Sharghi, H.; Shamsipur, M. Lead-selective membrane potentiometric sensor based on a recently synthesized bis(anthraquinone) sulfide derivative. Anal. Lett. 1998, 31, 2591–2605. [Google Scholar] [CrossRef]
- Rouhollahi, A.; Ganjali, M.R.; Shamsipur, M. Lead ion selective PVC membrane electrode based on 5,5′-dithiobis-(2-nitrobenzoic acid). Talanta 1998, 46, 1341–1346. [Google Scholar] [CrossRef]
- Ardakany, M.M.; Ensafi, A.A.; Naeimi, H.; Dastanpour, A.; Shamlli, A. Highly selective lead(II) coated-wire electrode based on a new Schiff base. Sens. Actuators B Chem. 2003, 96, 441–445. [Google Scholar] [CrossRef]
- Sadeghi, S.; Dashti, G.R.; Shamsipur, M. Lead-selective poly(vinyl cholride) membrane electrode based on piroxicam as a neutral carrier. Sens. Actuators B Chem. 2002, 81, 223–228. [Google Scholar] [CrossRef]
- Zareh, M.M.; Ghoneim, A.K.; El-Aziz, M.A. Effect of presence of 18-crown-6 on the response of 1-pyrrolidine dicarbodithioate-based lead selective electrode. Talanta 2001, 54, 1049–1057. [Google Scholar] [CrossRef]
- Xu, D.; Katsu, T. Tetrabenzyl pyrophosphate as a new class of neutral carrier responsive to lead ion. Talanta 2000, 51, 365–371. [Google Scholar] [CrossRef]
- Hassan, S.S.; Ghalia, M.A.; Amr, A.G.E.; Mohamed, A.H. New lead(II) selective membrane potentiometric sensors based on chiral 2,6-bis-pyridinecarboximide derivatives. Talanta 2003, 60, 81–91. [Google Scholar] [CrossRef]
- Jeong, T.; Lee, H.K.; Jeong, D.C.; Jeon, S. A lead(II)-selective PVC membrane based on a Schiff base complex of N,N′-bis(salicylidene)-2,6-pyridinediamine. Talanta 2005, 65, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, A.; Khajeh, B. Lead(II)-selective electrode based on phenyl disulfide. Anal. Sci. 2002, 18, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, E.; Brzózka, Z.; Kasiura, K.; Egberink, R.J.; Reinhoudt, D.N. Lead selective electrodes based on thioamide functionalized calix[4] arenes as ionophores. Anal. Chim. Acta 1994, 298, 253–258. [Google Scholar] [CrossRef]
- Lu, J.; Chen, R.; He, X. A lead ion-selective electrode based on a calixarene carboxyphenyl azo derivative. J. Electroanal. Chem. 2002, 528, 33–38. [Google Scholar] [CrossRef]
- Lee, H.K.; Song, K.; Seo, H.R.; Choi, Y.K.; Jeon, S. Lead(II)-selective electrodes based on tetrakis (2-hydroxy-1-naphthyl) porphyrins: The effect of atropisomers. Sens. Actuators B Chem. 2004, 99, 323–329. [Google Scholar] [CrossRef]
- Bhat, V.S.; Ijeri, V.S.; Srivastava, A.K. Coated wire lead(II) selective potentiometric sensor based on 4-tert-butylcalix[6] arene. Sens. Actuators B Chem. 2004, 99, 98–105. [Google Scholar] [CrossRef]
- Jain, A.K.; Gupta, V.K.; Singh, L.P.; Raisoni, J.R. A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4] arene receptors. Electrochim. Acta 2006, 51, 2547–2553. [Google Scholar] [CrossRef]
- Attiyat, A.S.; Christian, G.D.; Cason, C.V.; Bartsch, R.A. Benzo-18-crown-6 and its lariat ether derivatives as ionophores for potassium, strontium, and lead ion-selective electrodes. Electroanalysis 1992, 4, 51–56. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Gupta, V.K.; Jain, S. Determination of lead using a poly(vinyl chloride)-based crown ether membrane. Analyst 1995, 120, 495–498. [Google Scholar] [CrossRef]
- Hasse, W.; Ahlers, B.; Reinbold, J.; Cammann, K. PbOH+-selective membrane electrode based on crown ethers. Sens. Actuators B Chem. 1994, 19, 383–386. [Google Scholar] [CrossRef]
- Su, C.C.; Chang, M.C.; Liu, L.K. New Ag+-and Pb2+-selective electrodes with lariat crown ethers as ionophores. Anal. Chim. Acta 2001, 432, 261–267. [Google Scholar] [CrossRef]
- Shamsipur, M.; Ganjali, M.R.; Rouhollahi, A. Lead-selective membrane potentiometric sensor based on an 18-membered thiacrown derivative. Anal. Sci. 2001, 17, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Jain, A.K.; Kumar, P. PVC-based membranes of N,N′-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens. Actuators B Chem. 2006, 120, 259–265. [Google Scholar] [CrossRef]
- Yang, X.; Kumar, N.; Chi, H.; Hibbert, D.B.; Alexander, P.W. Lead-selective membrane electrodes based on dithiophenediazacrown ether derivatives. Electroanalysis 1997, 9, 549–553. [Google Scholar] [CrossRef]
- Mousavi, M.F.; Sahari, S.; Alizadeh, N.; Shamsipur, M. Lead ion-selective membrane electrode based on 1, 10-dibenzyl-1, 10-diaza-18-crown-6. Anal. Chim. Acta 2000, 414, 189–194. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Rouhollahi, A.; Mardan, A.R.; Hamzeloo, M.; Mogimi, A.; Shamsipur, M. Lead Ion-Selective Electrode Based on 4′-Vinylbenzo-15-crown-5 Homopolymer. Microchem. J. 1998, 60, 122–133. [Google Scholar] [CrossRef]
- Tavakkoli, N.; Shamsipur, M. Lead-selective membrane electrode based on dibenzopyrydino-18-crown-6. Anal. Lett. 1996, 29, 2269–2279. [Google Scholar] [CrossRef]
- Sheen, S.R.; Shih, J.S. Lead(II) ion-selective electrodes based on crown ethers. Analyst 1992, 117, 1691–1695. [Google Scholar] [CrossRef]
- Németh, T.; Kormos, A.; Tóth, T.; Balogh, G.T.; Huszthy, P. Synthesis and cation binding of acridono-18-crown-6 ether type ligands. Monatshefte Chem. Chem. Mon. 2015, 146, 1291–1297. [Google Scholar] [CrossRef]
- Dinten, O.; Spichiger, U.E.; Chaniotakis, N.; Gehrig, P.; Rusterholz, B.; Morf, W.E.; Simon, W. Lifetime of neutral-carrier-based liquid membranes in aqueous samples and blood and the lipophilicity of membrane components. Anal. Chem. 1991, 63, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Oesch, U.; Ammann, D.; Pretsch, E.; Simon, W. Selective Ionophores of Extreme Lipophilicity for Liquid Membrane Electrodes. Helv. Chim. Acta 1979, 62, 2073–2078. [Google Scholar] [CrossRef]
- Riddick, J.A.; Bunger, W.B.; Sakano, T.K. Organic solvents: Physical properties and methods of purification. In Techniques of Chemistry, 4th ed.; Weissberger, A., Ed.; Wiley-Interscience: New York, NY, USA, 1986; Volume 2, p. 1344. [Google Scholar]
- Bradshaw, J.S.; Huszthy, P.; Izatt, R.M. Proton-Ionizable crown compounds. 7. Synthesis of new crown compounds containing the dialkylhydrogenphosphate moiety. J. Heterocycl. Chem. 1986, 23, 1673–1676. [Google Scholar] [CrossRef]
- Huszthy, P.; Köntös, Z.; Vermes, B.; Pintér, Á. Synthesis of novel fluorescent acridono-and thioacridono-18-crown-6 ligands. Tetrahedron 2001, 57, 4967–4975. [Google Scholar] [CrossRef]
- Shibata, K.; Matsuda, S. Reactions and utilization of long-chain alkylene oxides. II. Reactions of higher alkylene oxides with hydroxy compounds and utilization of the products. Kogyo Kagaku Zasshi 1965, 68, 663–669. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef] [PubMed]
- Buck, R.P.; Toth, K.; Graf, E.; Horvai, G.; Pungor, E. Donnan exclusion failure in low anion site density membranes containing valinomycin. J. Electroanal. Chem. Interfacial Electrochem. 1987, 223, 51–66. [Google Scholar] [CrossRef]
- Eugster, R.; Gehrig, P.M.; Morf, W.E.; Spichiger, U.E.; Simon, W. Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes. Anal. Chem. 1991, 63, 2285–2289. [Google Scholar] [CrossRef]
- Zhang, W.; Jenny, L.; Spichiger, U.E. A comparison of neutral Mg2+-selective ionophores in solvent polymeric membranes: Complex stoichiometry and lipophilicity. Anal. Sci. 2000, 16, 11–18. [Google Scholar] [CrossRef]
- Nägele, M.; Mi, Y.; Bakker, E.; Pretsch, E. Influence of lipophilic inert electrolytes on the selectivity of polymer membrane electrodes. Anal. Chem. 1998, 70, 1686–1691. [Google Scholar] [CrossRef] [PubMed]
- Németh, T.; Golcs, Á.; Leveles, I.; Tóth, T.; Vértessy, B.G.; Huszthy, P. Structural characterization of a complex derived from lead(II) perchlorate and acridono-18-crown-6 ether. Struct. Chem. 2015, 26, 1467–1471. [Google Scholar] [CrossRef]
- Nägele, M.; Bakker, E.; Pretsch, E. General description of the simultaneous response of potentiometric ionophore-based sensors to ions of different charge. Anal. Chem. 1999, 71, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Meruva, R.K.; Pretsch, E.; Meyerhoff, M.E. Selectivity of polymer membrane-based ion-selective electrodes: Self-consistent model describing the potentiometric response in mixed ion solutions of different charge. Anal. Chem. 1994, 66, 3021–3030. [Google Scholar] [CrossRef] [PubMed]
Ions | logKPb,j |
---|---|
Li+ | −4.60 |
Na+ | −4.53 |
K+ | −3.86 |
Ag+ | −3.45 |
Mg2+ | −2.45 |
Cd2+ | −2.34 |
Zn2+ | −2.30 |
Co2+ | −2.27 |
Ca2+ | −2.04 |
Cu2+ | −2.04 |
Hg2+ | −0.56 |
Pb2+ | 0.00 |
iPrNH3+ | 2.31 |
NEAH+ | 8.84 |
Ions | logKPb, j |
---|---|
Li+ | −5.11 |
Na+ | −4.98 |
K+ | −4.39 |
Ag+ | −4.08 |
Mg2+ | −2.91 |
Zn2+ | −2.91 |
Co2+ | −2.87 |
Cd2+ | −2.80 |
Ca2+ | −2.56 |
Cu2+ | −2.46 |
Hg2+ | −0.83 |
Pb2+ | 0.00 |
iPrNH3+ | 3.49 |
NEAH+ | 10.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golcs, Á.; Horváth, V.; Huszthy, P.; Tóth, T. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore. Sensors 2018, 18, 1407. https://doi.org/10.3390/s18051407
Golcs Á, Horváth V, Huszthy P, Tóth T. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore. Sensors. 2018; 18(5):1407. https://doi.org/10.3390/s18051407
Chicago/Turabian StyleGolcs, Ádám, Viola Horváth, Péter Huszthy, and Tünde Tóth. 2018. "Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore" Sensors 18, no. 5: 1407. https://doi.org/10.3390/s18051407
APA StyleGolcs, Á., Horváth, V., Huszthy, P., & Tóth, T. (2018). Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore. Sensors, 18(5), 1407. https://doi.org/10.3390/s18051407