PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration
Abstract
:1. Introduction
2. Methods
2.1. Structure of the Improved PCANet
2.1.1. The First Stage of PCANet
2.1.2. The Second Stage of PCANet
2.1.3. Output Stage
2.2. Structural Representation
2.3. Similarity Metric and Cost Function
2.4. Implementation of the Proposed Registration Method
3. Experimental Results
3.1. Parameter Settings
3.1.1. Impact of the Patch Size
3.1.2. Impact of the Coefficients and
3.2. Comparison with State-of-the-Art Registration Methods
3.2.1. Test on the BrainWeb Dataset
3.2.2. Test on the RIRE Dataset
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, S.; Kruecker, J.; Turkbey, B.; Glossop, N.; Singh, A.K.; Choyke, P.; Wood, B.J. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput. Aided Surg. 2008, 13, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Marks, L.S.; Margolis, D.J.; Huang, J.; Macairan, M.L.; Lieu, P.; Fenster, A. Clinical application of a 3D ultrasound-guided prostate biopsy system: Biopsy tracking and lesion targeting via real-time MRI/ultrasound fusion. Urol. Oncol. Semin. Orig. Investig. 2011, 29, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wu, J.; Wang, X.; Yang, X.; Wu, Y.; Xu, B.; Zhang, L. An excellent navigation system and experience in craniomaxillofacial navigation surgery: A double-center study. Sci. Rep. 2016, 6, 28242. [Google Scholar] [CrossRef] [PubMed]
- Onofrey, J.A.; Staib, L.H.; Papademetris, X. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients. NeuroImage Clin. 2016, 10, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Andronache, A.; Von-Siebenthal, M.G.; Cattin, P. Non-rigid registration of multi-modal images using both mutual information and cross-correlation. Med. Image Anal. 2008, 12, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Viola, P.; Wells, W.M., III. Alignment by maximization of mutual information. Int. J. Comput. Vis. 1997, 24, 137–154. [Google Scholar] [CrossRef]
- Haber, E.; Modersitzki, J. Intensity gradient based registration and fusion of multi-modal images. In Proceedings of the MICCAI 2006, Copenhagen, Denmark, 1–6 October 2006; pp. 726–733. [Google Scholar]
- Knops, Z.F.; Maintz, J.B.A.; Viergever, M.A.; Pluim, J.P. Normalized mutual information based registration using k-means clustering and shading correction. Med. Image Anal. 2006, 10, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Ilunga-Mbuyamba, E.; Avina-Cervantes, J.G.; Lindner, D.; Cruz-Aceves, I.; Arlt, F.; Chalopin, C. Vascular structure identification in intraoperative 3D contrast-enhanced ultrasound data. Sensors 2016, 16, 497. [Google Scholar] [CrossRef] [PubMed]
- Studholme, C.; Drapaca, C.; Cardenas, V. Intensity robust viscous fluid deformation based morphometry using regionally adapted mutual information. In Proceedings of the 27th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, Shanghai, China, 31 August–3 September 2005; pp. 470–473. [Google Scholar]
- Pradhan, S.; Patra, D. P-spline based nonrigid brain MR image registration using regional mutual information. In Proceedings of the 10th Annual Conference of the IEEE-India-Council (INDICON), IIT Bombay, Mumbai, India, 13–15 December 2013. [Google Scholar]
- Loeckx, D.; Slagmolen, P.; Maes, F.; Vandermeulen, D.; Suetens, P. Nonrigid image registration using conditional mutual information. IEEE Trans. Med. Imaging 2010, 29, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Rivaz, H.; Karimaghaloo, Z.; Collins, D.L. Self-similarity weighted mutual information: A new nonrigid image registration metric. Med. Image Anal. 2014, 18, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.P.; Jenkinson, M.; Gleeson, F.V.; Brady, S.M.; Schnabel, J.A. Deformable multimodal registration with gradient orientation based on structure tensors. Ann. Br. Mach. Vis. Assoc. 2011, 2, 1–11. [Google Scholar]
- Nigris, D.D.; Collins, D.L.; Arbel, T. Multi-Modal Image Registration Based on Gradient Orientations of Minimal Uncertainty. IEEE Trans. Med. Imaging 2012, 31, 2343–2354. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ding, M.; Zhang, X.; Wu, Y.; Hu, J. Two phase non-rigid multi-modal image registration using Weber local descriptor-based similarity metrics and normalized mutual information. Sensors 2013, 13, 7599–7617. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.P.; Jenkinson, M.; Bhushan, M.; Matin, T.; Gleeson, F.V.; Brady, M.; Schnabel, J.A. MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 2012, 16, 1423–1435. [Google Scholar] [CrossRef] [PubMed]
- Wachinger, C.; Navab, N. Entropy and Laplacian images: Structural representations for multi-modal registration. Med. Image Anal. 2012, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hamm, J.; Ye, D.H.; Verma, R.; Davatzikos, C. GRAM: A framework for geodesic registration on anatomical manifolds. Med. Image Anal. 2010, 14, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Piella, G. Diffusion maps for multimodal registration. Sensors 2014, 14, 10562–10577. [Google Scholar] [CrossRef] [PubMed]
- Oktay, O.; Schuh, A.; Rajchl, M.; Keraudren, K.; Gomez, A.; Heinrich, M.P.; Rueckert, D. Structured decision forests for multi-modal ultrasound image registration. In Proceedings of the MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 363–371. [Google Scholar]
- Ma, K.; Wang, J.; Singh, V.; Tamersoy, B.; Chang, Y.J.; Wimmer, A.; Chen, T. Multimodal image registration with deep context reinforcement learning. In Proceedings of the MICCAI 2017, Quebec City, QC, Canada, 10–14 September 2017; pp. 240–248. [Google Scholar]
- Liao, R.; Miao, S.; de Tournemire, P.; Kamen, A.; Mansi, T.; Comaniciu, D. An artificial agent for robust image registration. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4168–4175. [Google Scholar]
- Wu, G.; Kim, M.; Wang, Q.; Shen, D. Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 2016, 63, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yang, J.; Zhang, J.; Nie, D.; Kim, M.; Wang, Q.; Shen, D. Deformable image registration based on similarity-steered CNN regression. In Proceedings of the MICCAI 2017, Quebec City, QC, Canada, 10–14 September 2017; pp. 300–308. [Google Scholar]
- De Vos, B.D.; Berendsen, F.F.; Viergever, M.A.; Staring, M.; Išgum, I. End-to-end unsupervised deformable image registration with a convolutional neural network. In Proceedings of the International Workshop on Deep Learning in Medical Image Analysis 2017, Quebec City, QC, Canada, 10–14 September 2017; pp. 204–212. [Google Scholar]
- Hu, Y.; Modat, M.; Gibson, E.; Ghavami, N.; Bonmati, E.; Moore, C.M.; Vercauteren, T. Label-driven weakly-supervised learning for multimodal deformable image registration. arXiv, 2017; arXiv:1711.01666. [Google Scholar]
- Sokooti, H.; de Vos, B.; Berendsen, F.; Lelieveldt, B.P.; Išgum, I.; Staring, M. Nonrigid image registration using multi-scale 3D convolutional neural networks. In Proceedings of the MICCAI 2017, Quebec City, QC, Canada, 10–14 September 2017; pp. 232–239. [Google Scholar]
- Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans. Image Process. 2015, 24, 5017–5032. [Google Scholar] [CrossRef] [PubMed]
- Rueckert, D.; Sonoda, L.I.; Hayes, C.; Hill, D.L.; Leach, M.O.; Hawkes, D.J. Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imaging 1999, 18, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.L.; Nocedal, J. Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans. Math. Softw. 2011, 38, 71–74. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, M.M.; Hu, X.; Wang, K.; Bai, X. Richer convolutional features for edge detection. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2016; pp. 5872–5881. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A non local algorithm for image denoising. In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar]
- Bianconi, F.; Fernández, A. Evaluation of the effects of Gabor filter parameters on texture classification. Pattern Recognit. 2007, 40, 3325–3335. [Google Scholar] [CrossRef]
Registration Methods | TRE | ||||||||
---|---|---|---|---|---|---|---|---|---|
T1-T2 | T1-PD | T2-PD | |||||||
Mean | Std | p-Value | Mean | Std | p-Value | Mean | Std | p-Value | |
/ | 6.68 | 2.85 | / | 6.92 | 3.06 | / | 6.21 | 2.73 | / |
NMI | 1.96 | 1.74 | 2.31 | 1.83 | 2.43 | 1.91 | |||
WLD | 1.84 | 1.60 | 2.04 | 1.79 | 2.38 | 1.69 | |||
ESSD | 1.55 | 1.24 | 1.82 | 1.34 | 1.67 | 1.03 | |||
MIND | 1.22 | 0.45 | 1.12 | 0.52 | 1.04 | 0.49 | |||
PSR | 0.76 | 0.37 | / | 0.78 | 0.46 | / | 0.73 | 0.41 | / |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Ding, M.; Huang, T.; Jin, X.; Zhang, X. PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration. Sensors 2018, 18, 1477. https://doi.org/10.3390/s18051477
Zhu X, Ding M, Huang T, Jin X, Zhang X. PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration. Sensors. 2018; 18(5):1477. https://doi.org/10.3390/s18051477
Chicago/Turabian StyleZhu, Xingxing, Mingyue Ding, Tao Huang, Xiaomeng Jin, and Xuming Zhang. 2018. "PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration" Sensors 18, no. 5: 1477. https://doi.org/10.3390/s18051477
APA StyleZhu, X., Ding, M., Huang, T., Jin, X., & Zhang, X. (2018). PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration. Sensors, 18(5), 1477. https://doi.org/10.3390/s18051477