Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution
Abstract
:1. Introduction
2. Materials
2.1. Hemolymph Collection
2.2. Elution from the Insect’s Body Surface
3. Methods
3.1. Total Protein Concentration
Calculation of the Total Protein Concentration
3.2. Proteolytic System
3.2.1. Protease Activity Analyses
3.2.2. Protease Activity Level Calculation
3.2.3. Protease Inhibitor Activity Analyses
3.2.4. Calculation of Protease Inhibitor Activity Levels
3.3. “Liver” Tests
3.3.1. Alanine Aminotransferase (ALT)
3.3.2. Aspartate Aminotransferase (AST)
3.3.3. Alkaline Phosphatase (ALP)
3.3.4. Calculation of ALT, AST, and ALP Activities
- A1, A2, A3, A4—individual readings of the absorbance values for the samples
- TV—total volume of the reaction mixture
- SV—sample volume used for the reaction
- P—optical path length of the cuvette
- 6.3—absorbance factor for dihydronicotinamide adenine dinucleotide (NADH; at 340-nm wavelength)
- 18.8—absorbance factor for 2,4-dinitrophenol (2,4-DNP)
3.4. Urea Concentration
Calculation of the Urea Concentration
3.5. Glucose Concentration
Calculation of the Glucose Concentration
3.6. Analysis Adjusted to the Type of Biological Material
3.7. Additional Tips for Applying Presented Methodologies
- the planned research group should always have an appropriate number of individual insects depending on the type of statistical analysis that the researcher wants to use (the authors suggest not fewer than 10 individual insects per group);
- if possible, it is always worth re-examining or even repeating the experiment to confirm the reliability of the obtained results;
- samples containing the hemolymph solution cannot remain defrosted for a long period of time, because positive temperature and exposition to atmospheric air (and the oxygen contained in it) cause their melanization, which disqualifies them from further analysis;
- in order to carry out all of the analyses as soon as possible, the methods for proteases and protease inhibitors that employ the same buffer in reactions should be performed at the same time;
- during the longer incubations that are required for the analysis of the proteolytic system, carrying out of the rapid “liver” or urea and glucose tests simultaneously is recommended;
- it is worth using modern laboratory equipment to speed up the analysis (e.g., such as in Figure 15);
- in the case of analyses of the proteolytic system, where the penultimate step is sample centrifugation (which is aimed at depositing the unreacted protein precipitate at the bottom of the tube), the entire analysis cannot be carried out on the well plate;
- in the case of “liver”, urea, and glucose tests, whole analyses can be conducted on the well plate;
- when analyzing a large number of samples, remember that the reaction begins to occur in the sample from the time the reagent is added; so, the time difference between pipetting the reagents to the first sample and the last sample should be minimal.
4. Examples of Result Interpretation
4.1. Meanings of the Proteolytic System Activity
4.1.1. The Proteolytic System on the Body Surface
4.1.2. The Proteolytic System in the Hemolymph
4.2. “Liver” Test Implications
4.3. Urea and Glucose Parameters
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Flannery, M.C. Biology Today: Insects: Beautiful & Useful. Am. Biol. Teach. 2002, 64, 376–381. [Google Scholar]
- Wilson-Rich, N.; Spivak, M.; Fefferman, N.H.; Starks, P.T. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 2009, 54, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Harman, A. Spojrzenie na pszczelarstwo w Stanach Zjednoczonych. Pasieka 2003, 4, 48–51. [Google Scholar]
- Enserink, M.; Hines, P.J.; Vignieri, S.N.; Wigginton, N.S.; Yeston, J.S. Introduction: The Pesticide Paradox. Science 2013, 341, 729. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.A.; Sayed, R.M. Insecticidal and Biochemical Characterization of the Rice Husk Oil. Adv. Biochem. Biotechnol. 2015, 1, 1–9. [Google Scholar]
- Theopold, U.; Li, D.; Fabbri, M.; Scherfer, C.; Schmidt, O. The coagulation of insect hemolymph. Cell. Mol. Life Sci. 2002, 59, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Rhee, W.J.; Park, T.H. Silkworm hemolymph inhibits baculovirus-induced insect cell apoptosis. Biochem. Biophys. Res. Commun. 2000, 271, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Theopold, U.; Schmidt, O.; Söderhäll, K.; Dushay, M.S. Coagulation in arthropods: Defence, wound closure and healing. Trends Immunol. 2004, 25, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Borsuk, G.; Paleolog, J.E.; Olszewski, K.R.; Chobotow, J.; Skoczylas, D.O. Body-surface metalloprotease activity in Apis mellifera L. workers relative to environmental pollution. Med. Wet. 2012, 68, 406–410. [Google Scholar]
- Strachecka, A.; Gryzińska, M.; Krauze, M.; Grzywnowicz, K. Profile of the body surface proteolytic system in Apis mellifera queens. Czech J. Anim. Sci. 2011, 56, 15–22. [Google Scholar] [CrossRef]
- Strachecka, A.; Paleolog, J.; Grzywnowicz, K. The surface proteolytic activity in Apis mellifera. J. Apic. Sci. 2008, 1, 57–68. [Google Scholar]
- Bajda, M.; Łoś, A.; Schulz, M.; Kasperek, K. Mammalian and insect metalloproteases. Med. Wet. 2016, 72, 408–412. [Google Scholar] [CrossRef]
- Schacterle, G.; Pollack, R. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 1973, 51, 654–655. [Google Scholar] [CrossRef]
- Anson, M. The estimation of pepsin, tripsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 1938, 22, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Borsuk, G.; Olszewski, K.; Paleolog, J.; Lipiński, Z. Proteolysis on the body surface of pyrethroid-sensitive and resistant Varroa destructor. Acta Parasitol. 2013, 58, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Grzywnowicz, K.; Ciołek, A.; Tabor, A.; Jaszek, M. Profiles of the body-surface proteolytic system of honey bee queens, workers and drones: Ontogenetic and seasonal changes in proteases and their natural inhibitors. Apidologie 2009, 40, 4–19. [Google Scholar] [CrossRef]
- Lee, T.; Lin, Y. Trypsin inhibitor and trypsin-like protease activity in air- or submergence-grown rice (Oryza sativa L.) coleoptiles. Plant. Sci. 1995, 106, 43–54. [Google Scholar] [CrossRef]
- Strachecka, A.; Chobotow, J.; Paleolog, J.; Łoś, A.; Schulz, M.; Teper, D.; Kucharczyk, H.; Grzybek, M. Insights into the biochemical defence and methylation of the solitary bee Osmia rufa L: A foundation for examining eusociality development. PLoS ONE 2017, 12, e0176539. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Olszewski, K.; Paleolog, J. Varroa treatment with bromfenvinphos markedly suppresses honeybee biochemical defence levels. Entomol. Exp. Appl. 2016, 160, 57–71. [Google Scholar] [CrossRef]
- Strachecka, A.; Paleolog, J.; Borsuk, G.; Olszewski, K. The influence of formic acid on the body surface proteolytic system at different developmental stages in Apis mellifera L. workers. J. Apic. Res. 2012, 51, 252–262. [Google Scholar] [CrossRef]
- Strachecka, A.; Paleolog, J.; Olszewski, K.; Borsuk, G. Influence of amitraz and oxalic acid on the cuticle proteolytic system of Apis mellifera L. workers. Insects 2012, 3, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Borsuk, G.; Paleolog, J.E.; Olszewski, K.; Chobotow, J. Anti-pathogenic activity on the body surface of adult workers of Apis mellifera. Med. Wet. 2012, 68, 290–292. [Google Scholar]
- Strachecka, A.; Borsuk, G.; Paleolog, J.; Olszewski, K.; Bajda, M.; Chobotow, J. Body-Surface Compounds in Buckfast and Caucasian Honey Bee Workers (Apis Mellifera). J. Apic. Sci. 2014, 58, 5–15. [Google Scholar] [CrossRef]
- Strachecka, A.; Krauze, M.; Olszewski, K.; Borsuk, G.; Paleolog, J.; Merska, M.; Chobotow, J.; Bajda, M.; Grzywnowicz, K. Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry 2014, 79, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Farjan, M.; Dmitryjuk, M.; Lipiński, Z.; Łopieńska-Biernat, E.; Żółtowska, K. Supplementation of the honey bee diet with vitamin C: I. The effect on the antioxidative system of Apis mellifera carnica brood at different stages. J. Apic. Res. 2012, 51, 263–270. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Paleolog, J.; Borsuk, G.; Bajda, M.; Krauze, M.; Merska, M.; Chobotow, J. Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 2014, 86, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Frączek, R.; Żółtowska, K.; Lipiński, Z. The activity of nineteen hydrolases in extracts from Varroa destructor and in hemolymph Apis mellifera carnica bee worker bees. J. Apic. Sci. 2009, 53, 43–51. [Google Scholar]
- Nilsen, K.; Ihle, K.; Frederick, K.; Fondrk, M.; Smedal, B.; Hartfelder, K.; Amdam, G. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology. J. Exp. Biol. 2011, 214, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Olszewski, K.; Paleolog, J. Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. J. Apic. Sci. 2015, 59, 129–141. [Google Scholar] [CrossRef]
- Ashihara, H.; Crozier, A. Caffeine: A well-known but little mentioned compound in plant science. Trends Plant. Sci. 2001, 6, 407–413. [Google Scholar] [CrossRef]
- Kim, Y.; Sano, H. Pathogen resistance of transgenic tobacco plants producing caffeine. Phytochemistry 2008, 69, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Davies, K. Intracellular proteolytic systems may function as secondary antioxidant defenses: An hypothesis. J. Free Rad. Biol. Med. 1986, 2, 155–173. [Google Scholar] [CrossRef]
- Ranadive, P.; Mehta, A.; George, S. Rational selection and screening of mutant strains of Sporidiobolus johnsonii—ATCC 20490 for improved production of Coenzyme Q10. Int. Conf. Life Sci. Technol. IPCBEE 2011, 3, 141–145. [Google Scholar]
- Bode, W.; Fernandez-Catalan, C.; Nagase, H.; Maskos, K. Endoproteinase—Protein inhibitor interaction. Acta Pathol. Microbiol. Immunol. Scand. 1999, 107, 3–10. [Google Scholar] [CrossRef]
- Talaei-Hassanloui, R.; Bakhshaei, R.; Hosseininaveh, V.; Khorramnezhad, A. Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. Kurstaki. Front. Physiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Łopieńska-Biernat, E.; Sokół, R.; Michalczyk, M.; Żółtowska, K.; Stryiński, R. Biochemical status of feral honey bees (Apis mellifera) infested with various pathogens. J. Apic. Res. 2017, 56, 606–615. [Google Scholar] [CrossRef]
- Motoba, K.; Nishizawa, T.; Suzuki, H.; Hamaguchi, M.; Uchida, M.; Funayama, S. Species-specific detoxification metabolism of fenpyroximate, a potent acaricide. Pest. Biochem. Physiol. 2000, 67, 73–84. [Google Scholar] [CrossRef]
- Bajda, M.; Łoś, A.; Merska, M. Effect of amphotericin B on the biochemical markers in the haemolymph of honey bees. Med. Wet. 2014, 70, 766–769. [Google Scholar]
- Sokół, R. Selected hemolymphatic biochemical indices in the course of Varroa jacobsoni invasion in bees (II Aspartic and alanine transaminase activity in the hemolymph of the brood, workers and drones). Acta Acad. Agric. Tech. Olst. 1996, 24, 113–125. [Google Scholar]
- Nation, J. Insect Physiology and Biochemistry; CRC Press: London, UK, 2008. [Google Scholar]
- Mardani-Talaee, M.; Rahimi, V.; Zibaee, A. Effects of host plants on digestive enzymatic activities and some components involved in intermediary metabolism of Chrysodeixis chalcites (Lepidoptera: Noctuidae). J. Entomol. Acarol. Res. 2014, 46, 96–101. [Google Scholar] [CrossRef]
- Bergmeyer, H.; Scheibe, P.; Wahlefeld, A. Optimalization of methods for aspartate aminotransferase and alanine aminotransferase. Clin. Chem. 1978, 24, 58–73. [Google Scholar] [PubMed]
- Ahmed, Y.; Mostafa, A.; Shoukry, A. Effect of chlorfluazuron on transaminases activities in the larvae and pupae of Spodoptera littoralis. Rijksuniv. Gent 1990, 55, 621–627. [Google Scholar]
- Assar, A.; Abo-El-Mahasen, M.; Harba, N.; Rady, A. Biochemical effects of cyromazine on Culex pipiens larvae (Dipter: Culicidae). J. Am. Sci. 2012, 8, 443–450. [Google Scholar]
- Inagaki, Y.; Matsumoto, Y.; Kataoka, K.; Matsuhashi, N.; Sekimizu, K. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph. BMC Pharmacol. Toxicol. 2012, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, Y.; Matsumoto, Y.; Ishii, M.; Uchino, K.; Sezutsu, H.; Kazuhisa, S. Fluorescence imaging for a noninvasive in vivo toxicity-test using a transgenic silkworm expressing green fluorescent protein. Sci. Rep. 2015, 5, 11180. [Google Scholar] [CrossRef] [PubMed]
- Şapcaliu, A.; Pavel, C.; Savu, V.; Cãuia, E.; Matei, M.; Rãdoi, I. Biochemical and cytological investigations on haemolymph of Apis mellifera carpathica bee in stressful conditions. Bull. UASVM Anim. Sci. Biotechnol. 2010, 67, 313–320. [Google Scholar]
- Augustyniak, A.; Skrzydlewska, E. Antioxidative abilities during aging. Postȩpy Higieny i Medycyny Doświadczalnej 2004, 58, 194–201. [Google Scholar] [PubMed]
- Bursell, E. The excretion of nitrogen in insects. Adv. Insect Physiol. 1967, 4, 33–67. [Google Scholar]
- Hahn, D.; Denlinger, D. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 2007, 53, 760–773. [Google Scholar] [CrossRef] [PubMed]
Collecting Hemolymph: | |||
flowing out after detachment of the antennae | flowing out after incision of the body with a scalpel | into a glass capillary by puncturing the body | |
description of the sampling technique | 1. Holding the insect thorax and head immobilization (e.g., with fingers or with tweezers). 1 2. Removing the antennae with tweezers. 3. Collecting floating hemolymph from the head surface with a pipette. 2 * scheme in Figure 1 | 1. Insect immobilization (e.g., with fingers or with tweezers). 1 2. Incision of body layers with a scalpel. 1 3. Collecting floating hemolymph with a pipette. * scheme in Figure 2 | 1. Holding and immobilization of the insect with tweezers. 1 2. Puncturing the abdomen with a sterile preparation needle. 3. Placing a glass capillary inside the abdomen and collecting hemolymph straight from the venous sinus. 3 * scheme in Figure 3 * demonstrative photo in Figure 4 |
difficulty level | easy | difficult | difficult and requiring precision |
insects on which the method can be used | adult imago with antennae | insects with non-chitinized body surface | insects with developed venous sinuses |
need for special tools | disposable medical gloves tweezers pipette pipette tips beaker with 0.6% NaCl Eppendorf tube | disposable medical gloves tweezers pipette pipette tips beaker with 0.6% NaCl scalpel Eppendorf tube | disposable medical gloves tweezers preparation needle glass capillary pipette pipette tips beaker with 0.6% NaCl micropipette 2 Eppendorf tube |
microbiological contamination of the collected material | likely | very likely | unlikely |
amount of collected material (e.g., from two-day-old honey bees) (personal observation) | about 5–10 µL | about 2–8 µL | about 6–20 µL |
storage conditions | Hemolymph suspended in physiological saline in the Eppendorf tube can be frozen at −20 °C for about three months before enzymes and proteins lose activity. | Hemolymph suspended in physiological saline in the Eppendorf tube can be frozen at −20 °C for about three months before enzymes and proteins lose activity. | Hemolymph inside the glass capillary placed in physiological saline in the Eppendorf tube can be frozen at −20 °C for about eight months before enzymes and proteins lose activity, or hemolymph blown out from the glass capillary and suspended in physiological saline in the Eppendorf tube can be frozen at −20 °C for about three months before enzymes and proteins lose activity. |
pH | Composition of the Buffer Solution | |
---|---|---|
A (mL) | B (mL) | |
0.1 M (21.014 g/L) Citric Acid Monohydrate | 0.2 M (35.60 g/L) Na2HPO4·2H2O | |
2.2 | 9.88 | 0.12 |
2.4 | 9.45 | 0.55 |
2.6 | 9.00 | 1.00 |
2.8 | 8.51 | 1.49 |
3.0 | 8.03 | 1.97 |
3.2 | 7.60 | 2.40 |
3.4 | 7.20 | 2.80 |
3.6 | 6.84 | 3.16 |
3.8 | 6.51 | 3.49 |
4.0 | 6.20 | 3.80 |
4.2 | 5.91 | 4.09 |
4.4 | 5.64 | 4.36 |
4.6 | 5.37 | 4.63 |
4.8 | 5.12 | 4.88 |
5.0 | 4.90 | 5.10 |
5.2 | 4.69 | 5.31 |
5.4 | 4.47 | 5.53 |
5.6 | 4.22 | 5.78 |
5.8 | 4.00 | 6.00 |
6.0 | 3.74 | 6.26 |
6.2 | 3.45 | 6.55 |
6.4 | 3.14 | 6.86 |
6.6 | 2.79 | 7.21 |
6.8 | 2.35 | 7.65 |
7.0 | 1.90 | 8.10 |
7.2 | 1.38 | 8.62 |
7.4 | 0.98 | 9.02 |
7.6 | 0.68 | 9.32 |
7.8 | 0.46 | 9.54 |
0.1 M (20.62 g/L) 5,5-Diethylbarbituric Acid Sodium Salt | 0.1 M HCL | |
8.0 | 7.06 | 2.94 |
8.2 | 7.56 | 2.44 |
8.4 | 8.12 | 1.88 |
0.1M (7.507 g/L) Glycine +0.1M (5.844 g/L) NaCL | 0.1 M NaOH | |
8.6 | 9.47 | 0.53 |
8.8 | 9.20 | 0.80 |
9.0 | 8.84 | 1.16 |
9.2 | 8.40 | 1.60 |
9.4 | 7.89 | 2.11 |
9.6 | 7.32 | 2.68 |
9.8 | 6.72 | 3.28 |
10.0 | 6.25 | 3.75 |
10.2 | 5.88 | 4.12 |
10.4 | 5.57 | 4.43 |
10.6 | 5.36 | 4.64 |
10.8 | 5.22 | 4.78 |
11.0 | 5.12 | 4.88 |
11.2 | 5.04 | 4.96 |
11.4 | 4.95 | 5.05 |
11.6 | 4.87 | 5.13 |
11.8 | 4.76 | 5.24 |
12.0 | 4.60 | 5.40 |
12.2 | 4.32 | 5.68 |
12.4 | 3.91 | 6.09 |
12.6 | 3.18 | 6.82 |
12.8 | 2.14 | 7.86 |
Type of Analyses | Hemolymph Solution | Body Surface Elution | |
---|---|---|---|
total protein concentration | + | + | |
Proteases activity | acidic | + | + |
neutral | + | + | |
alkaline | + | + | |
proteases inhibitors activity | acidic | + | + |
neutral | + | + | |
alkaline | + | + | |
“liver” tests | ALT | + | − |
AST | + | − | |
ALP | + | − | |
urea concentration | + | − | |
glucose concentration | + | − |
The Sample Result Compared with the Control Group Sample Result Is: | |||
---|---|---|---|
Increased | Decreased | ||
Protease activity | acidic | − | + |
neutral | − | + | |
alkaline | − | + | |
Protease inhibitor activity | acidic | − | + |
neutral | − | + | |
alkaline | − | + |
The Sample Result Compared with the Control Group Sample Result is: | |||
---|---|---|---|
Increased | Decreased | ||
Protease activity | acidic | “+” only on the first of the three days, and “−“ later on | + |
neutral | + | ||
alkaline | + | ||
Protease inhibitor activity | acidic | − | + |
neutral | − | + | |
alkaline | − | + |
The Sample Result Compared to the Control Group Sample Result Is: | ||
Increased | Decreased | |
ALT | -with age; -during biostimulator or vitamin administration | -after contact with unfavorable/ harmful factors |
AST | ||
ALP |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łoś, A.; Strachecka, A. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors 2018, 18, 1494. https://doi.org/10.3390/s18051494
Łoś A, Strachecka A. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors. 2018; 18(5):1494. https://doi.org/10.3390/s18051494
Chicago/Turabian StyleŁoś, Aleksandra, and Aneta Strachecka. 2018. "Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution" Sensors 18, no. 5: 1494. https://doi.org/10.3390/s18051494
APA StyleŁoś, A., & Strachecka, A. (2018). Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors, 18(5), 1494. https://doi.org/10.3390/s18051494