A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads
Abstract
:1. Introduction
2. Experimental Setup
2.1. The PVDF Smart Sensor
2.2. Experimental Setup
2.3. Experimental Procedures
3. The Test Results and Discussion
3.1. The Time Histories of Impact Force and Stress
3.2. The Effect of Impact Energy on Impact Stress
3.3. The Effect of Component Stiffness on Impact Stress
4. Finite Element Analysis Model
4.1. Model Establishment
4.2. Constitutive Models
4.2.1. Constitutive Model of the Steel
4.2.2. Constitutive Relationship of the Concrete Structures
4.3. Comparison of the Finite Element Results with the Experimental Results
5. Summary
- (1)
- For the tested specimens, the impact force–time curve and the stress time history curve were basically the same. The results showed that the embedded PVDF sensor can capture the internal stress of the CFST under an external impact load and effectively monitor the local stress changes in the structure.
- (2)
- It was found that the impact stress increased first and then tended to stabilize with the increase in impact energy by means of impact tests of different CFSTs. The internal concrete stress of a CFST under an impact is not only related to the impact energy, but also to the stiffness of the CFST. When the impact energy is small and the CFST is not damaged, the impact energy is dominant, and the impact stress increases rapidly with an increase in impact energy. With an increase of the number of impacts, the CFST is damaged and the stiffness of the component decreases, and the internal concrete stress tends to stabilize and even decrease under an impact.
- (3)
- By using the finite element simulation of concrete filled steel tubular stub columns under impact load, the numerical prediction of the internal concrete stress and the test results had good consistency. This verifies the feasibility of using a PVDF smart sensor for impact stress monitoring. This monitoring data could be utilized to study the dynamic failure mechanism of concrete-filled steel tubular structures.
Author Contributions
Funding
Conflicts of Interest
References
- Sundarraja, M.C.; Prabhu, G.G. Finite element modeling of CFRP jacketed CFST members under flexural loading. Thin Walled Struct. 2011, 49, 1483–1491. [Google Scholar] [CrossRef]
- Abed, F.; AlHamaydeh, M.; Abdalla, S. Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). J. Constr. Steel Res. 2013, 80, 429–439. [Google Scholar] [CrossRef]
- Yang, Y.F.; Zhang, Z.C.; Fu, F. Experimental and numerical study on square RACFST members under lateral impact loading. J. Constr. Steel Res. 2015, 111, 43–56. [Google Scholar] [CrossRef]
- Aghdam, S.; Thambiratnam, D.P.; Dhanasekar, M. Experimental Investigation on Lateral Impact Response of Concrete-Filled Double-Skin Tube Columns Using Horizontal-Impact-Testing System. Exp. Mech. 2016, 56, 1133–1153. [Google Scholar] [CrossRef] [Green Version]
- Mirmomeni, M.; Heidarpour, A.; Zhao, X.L.; Packer, J.A. Size-dependency of concrete-filled steel tubes subject to impact loading. Int. J. Impact Eng. 2017, 100, 90–101. [Google Scholar] [CrossRef]
- Alam, M.I.; Fawzia, S.; Zhao, X.Y. Performance and dynamic behaviour of FRP strengthened CFST members subjected to lateral impact. Eng. Struct. 2017, 147, 160–176. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber optic sensors for structural health monitoring of air platforms. Sensors 2011, 11, 3687–3705. [Google Scholar] [CrossRef] [PubMed]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Duan, Y.; Or, S.W.; Zhao, Y. Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel cables: Design theory and experimental validation. Sensors 2014, 14, 13644–13660. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huo, L.; Chen, D.; Li, W.; Song, G. Impedance-based pre-stress monitoring of rock bolts using a piezoceramic-based smart washer—A feasibility study. Sensors 2017, 17, 250. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Li, X.; Li, H.; Wang, Z.; Song, G. Dynamic Modelling of Embeddable Piezoceramic Transducers. Sensors 2017, 17, 2801. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.C.; Wang, S.; Miao, X.G. Research of three-dimensional force sensor based on multiplexed fiber Bragg grating strainsensors. Opt. Eng. 2017, 56. [Google Scholar] [CrossRef]
- Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors. Smart Mater. Struct. 2016, 25, 095051. [Google Scholar] [CrossRef]
- Yeager, M.; Whitaker, A.; Todd, M. A method for monitoring bolt torque in a composite connection using an embedded fiber Bragg grating sensor. J. Interll. Mater. Syst. Struct. 2018, 29, 335–344. [Google Scholar] [CrossRef]
- Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des. 2012, 35, 572–588. [Google Scholar] [CrossRef] [Green Version]
- Ya, M.; Marquette, P.; Belahcene, F.; Lu, J. Residual stresses in laser welded aluminium plate by use of ultrasonic and optical methods. Mater. Sci. Eng. 2004, 382, 257–264. [Google Scholar] [CrossRef]
- Ya, M.; Xing, Y.M.; Dai, F.; Lu, K.; Lu, J. Study of residual stress in surface nanostructured AISI 316L stainless steel using two mechanical methods. Surf. Coat. Technol. 2003, 168, 148–155. [Google Scholar] [CrossRef]
- Song, G.; Qiao, P.; Binienda, W.K.; Zou, G.P. Active vibration damping of a composite beam using smart sensors and actuators. ASCE J. Aerosp. Eng. 2002, 15, 97–103. [Google Scholar] [CrossRef]
- Liu, T.; Huang, Y.; Zou, D.; Teng, J.; Li, B. Exploratory study on water seepage monitoring of concrete structures using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22, 065002. [Google Scholar] [CrossRef]
- Venugopal, V.P.; Wang, G. Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 2015, 26, 1679–1698. [Google Scholar] [CrossRef]
- Zou, D.; Liu, T.; Huang, Y.; Zhang, F.; Du, C.; Li, B. Feasibility of water seepage monitoring in concrete with embedded smart aggregates by P-wave travel time measurement. Smart Mater. Struct. 2014, 23, 067003. [Google Scholar] [CrossRef]
- Han, B.G.; Wang, Y.; Dong, S.; Zhang, L.q.; Ding, S.Q.; Yu, X.; Ou, J.P. Smart concretes and structures: A review. J. Intell. Mater. Syst. Struct. 2015, 26, 1–43. [Google Scholar] [CrossRef]
- Song, G.; Olmi, C.; Gu, H. An over height vehicle-bridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 2007, 16, 462–468. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L. Health monitoring of a concrete structure using piezo-ceramic materials. Smart Mater. Struct. 2005, 5765, 108–119. [Google Scholar]
- Song, G.; Gu, H.; Mo, Y.L.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater Struct 2007, 16, 959–968. [Google Scholar] [CrossRef]
- Xu, B.; Wang, D. Development of embedded PZT-based dynamic shear stress sensors for concrete structures. Piezoelectr. Acoustoopt. 2015, 37, 764–779. [Google Scholar]
- Hou, S.; Zhang, H.B.; Ou, J.P. Seismic shear stress measurement using PZT based smart aggregate. Civ. Eng. J. 2013, 46, 195–201. [Google Scholar]
- Hou, S.; Zhang, H.B.; Ou, J.P. A PZT-based smart aggregate for compressive seismic stress monitoring. Smart Mater. Struct. 2012, 21, 105035. [Google Scholar] [CrossRef]
- Wu, H.; Tang, L.; Yang, Y.; Soh, C.K. A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2013, 24, 357–368. [Google Scholar] [CrossRef]
- Wang, G. Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory. J. Intell. Mater. Syst. Struct. 2013, 24, 226–239. [Google Scholar] [CrossRef]
- Kaur, N.; Bhalla, S. Numerical investigations on energy harvesting potential of thin PZT patches adhesively bonded on RC structures. Sens. Actuators A Phys. 2016, 241, 44–59. [Google Scholar] [CrossRef]
- Peigney, M.; Siegert, D. Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Mater. Struct. 2013, 22, 095019. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Y. Wave propagation modeling of the PZT sensing region for structural health monitoring. Smart Mater. Struct. 2007, 16, 706. [Google Scholar] [CrossRef]
- Yang, Y.; Annamdas, V.G.M.; Wang, C.; Zhou, Y. Application of multiplexed FBG and PZT impedance sensors for health monitoring of rocks. Sensors 2008, 8, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, G.; Flawinne, S.; Sener, J.Y.; Deraemaeker, A. Design and validation of embedded piezoelectric transducers for damage detection applications in concrete structures. Key Eng. Mater. 2013, 569, 805–811. [Google Scholar] [CrossRef]
- Tsangouri, E.; Karaiskos, G.; Aggelis, D.G.; Deraemaeker, A.; Hemelrijck, D.V. Crack sealing and damage recovery monitoring of a concrete healing system using embedded piezoelectric transducers. Struct. Health Monit. 2015, 14, 462–474. [Google Scholar] [CrossRef]
- Kaur, N.; Li, L.; Bhalla, S.; Xia, Y.; Ni, P.; Adhikari, S. Integration and evaluation of multiple piezo configurations for optimal health monitoring of reinforced concrete structures. J. Intell. Mater. Syst. Struct. 2017, 28, 2717–2736. [Google Scholar] [CrossRef]
- Cahill, P.; Pakrashi, V.; Sun, P.; Mathewson, A.; Nagarajaiah, S. Energy Harvesting Techniques for Health Monitoring and Indicators for Control of a Damaged Pipe Structure. Smart Struct. Syst. 2018, 21, 287–303. [Google Scholar]
- Kaur, N.; Bhalla, S. Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors. J. Energy Eng. 2014, 141, D4014001. [Google Scholar] [CrossRef]
- Kaur, N.; Bhalla, S.; Shanker, R.; Panigrahi, R. Experimental evaluation of miniature impedance chip for structural health monitoring of prototype steel/RC structures. Exp. Tech. 2015. [Google Scholar] [CrossRef]
- Quinn, W.; Kelly, G.; Barrett, J. Development of an embedded wireless sensing system for the monitoring of concrete. Struct. Health Monit. 2012, 11, 381–392. [Google Scholar] [CrossRef]
- Knapp, J.; Altmann, E.; Niemann, J.; Werner, K.D. Measurement of Shock Events by Means of Strain Gauges and Accelerometers. Measurement 1998, 24, 87–96. [Google Scholar] [CrossRef]
- Knapp, J.; Niemann, J.; Hofmann, D.; Habel, W. Dynamic strain measurement by means of electrical methods and fibre optics. In Proceedings of the 11th International Conference on Experimental Mechanics, Oxford, UK, 24–28 August 1998. [Google Scholar]
- Audrain, P.; Masson, P.; Berry, A. The use of PVDF strain sensing in active control of structural intensity in beams. J. Intell. Mater. Syst. Struct. 2004, 15, 319–327. [Google Scholar] [CrossRef]
- Cahill, P.; Hazra, B.; Karoumi, R.; Mathewson, A.; Pakrashi, V. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mech. Syst. Signal Process. 2018, 106, 265–283. [Google Scholar] [CrossRef]
- Cahill, P.; O’Keeffe, R.; Jackson, N.; Mathewson, A.; Pakrashi, V. Structural Health Monitoring of Reinforced Concrete Beam using Piezoelectric Energy Harvesting System. In Proceedings of the 7th European Workshop on Structural Health Monitoring EWSHM 2014, Nantes, France, 8–11 July 2014. [Google Scholar]
- Lei, K.F.; Hsieh, Y.Z.; Chiu, Y.Y.; Wu, M.H. The structure design of piezoelectric poly (vinylidene fluoride)(PVDF) polymer-based sensor patch for the respiration monitoring under dynamic walking conditions. Sensors 2015, 15, 18801–18812. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, W.; Stefanini, C.; Fu, X.; Dario, P. A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system. Sensors 2010, 10, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Chen, X.; Ni, Q.; Li, L.; Ju, C. Dependence of the impact response of polyvinylidene fluoride sensors on their supporting materials’ elasticity. Sensors 2013, 13, 8669–8678. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Dorantes-Gonzalez, D.J.; Chen, K.; Yang, F.; Jin, B.; Li, Y.; Chen, Z.; Hu, X. A four-quadrant pvdf transducer for surface acoustic wave detection. Sensors 2012, 12, 10500–10510. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, D.; Luo, H. Real-time deflection monitoring for milling of a thin-walled workpiece by using PVDF thin-film sensors with a cantilevered beam as a case study. Sensors 2016, 16, 1470. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Kong, Q.; Qian, H.; Patil, D.; Lim, I.; Li, M.; Liu, D.; Song, G. Study of Impact Damage in PVA-ECC Beam under Low-Velocity Impact Loading Using Piezoceramic Transducers and PVDF Thin-Film Transducers. Sensors 2018, 18, 671. [Google Scholar] [CrossRef] [PubMed]
- Shirinov, A.V.; Schomburg, W.K. Pressure sensor from a PVDF film. Sens. Actuators 2008, 142, 48–55. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Dong, W.J.; Jin, Y.J.; Ou, J.P. Strain properties analysis and wireless collection system of PVDF for structural local health monitoring of civil engineering structures. Int. Soc. Opt. Eng. 2009. [Google Scholar] [CrossRef]
- Meng, Y.; Yi, W.J. Application of a PVDF based stress gauge in determining dynamic stress-strain curves of concrete under impact testing. Smart Mater. Struct. 2011, 20, 065004. [Google Scholar] [CrossRef]
- Jeon, J.C.; Sohn, J.W.; Choi, S.B. Comparison of Dynamic Signal of MFC and PVDF Sensor: Experimental Investigation. Adv. Mater. Res. 2011, 317–319, 1098–1101. [Google Scholar] [CrossRef]
- Dung, C.V.; Sasaki, E. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading. Sensors 2016, 16, 601. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.C.; Ma, C.C. Investigating dynamic transient behavior of Timoshenko cantilever beam by theoretical analysis, numerical calculation and experimental measurement. Int. J. Solids Struct. 2016, 80, 274–283. [Google Scholar] [CrossRef]
- Symonds, P.S. Survey of Methods of Analysis for Plastic Deformation of Structures under Dynamic Loading; Brown University: Providence, RI, USA, 1967. [Google Scholar]
- Liu, W.; Han, L.H. Research on some issues of ABAQUS analysis on the behavior of axially loaded concrete-filled steel tubes. Harbin Inst. Technol. 2005, 37 (Suppl. 2), 157–160. (In Chinese) [Google Scholar]
- Han, L.H. Concrete Filled Steel Tubular Structures-Theory and Practice, 2nd ed.; Science Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Comite Euro-International Du Beton. CEB-FIP Model Code 1990: Design Code; Thomas Telford Ltd.: London, UK, 1993. [Google Scholar]
Specimens | Sensitivity (MPa/V) | ||
---|---|---|---|
S-1 | S-2 | S-3 | |
A-2 | 1.288 | 1.301 | 1.321 |
A-3 | 1.307 | 1.311 | 1.285 |
A-4 | 1.309 | 1.312 | 1.302 |
h(m) | E(kJ) | A-2 (/MPa) | A-3 (/MPa) | A-4 (/MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S-1 (Z) | S-2 (Y) | S-3 (X) | S-1 (Z) | S-2 (Y) | S-3 (X) | S-1 (Z) | S-2 (Y) | S-3 (X) | ||
1.0 | 3.32 | 25.41 | 4.01 | 6.65 | 30.97 | 7.62 | 8.28 | 40.72 | 6.01 | 7.22 |
1.5 | 4.98 | 38.56 | 4.00 | 7.67 | 44.45 | 8.5 | 9.74 | 49.21 | 8.02 | 8.52 |
2.0 | 6.64 | 38.02 | 5.16 | 8.27 | 43.67 | 8.95 | 10.17 | 50.29 | 8.23 | 9.75 |
2.5 | 8.31 | 39.60 | 5.90 | 7.57 | 45.15 | 9.4 | 11.29 | 49.23 | 9.12 | 10.02 |
3.0 | 9.97 | 39.75 | 7.54 | 8.28 | 44.09 | 10.86 | 11.92 | 51.36 | 8.96 | 10.95 |
3.5 | 11.63 | 41.93 | 7.21 | 7.60 | 44.12 | 11.51 | 11.25 | 49.36 | 11.25 | 9.53 |
4.0 | 13.29 | 41.17 | 7.06 | 7.14 | 45.67 | 11.14 | 12.18 | 42.67 | 10.63 | 11.23 |
h/m | /MPa | |||||
---|---|---|---|---|---|---|
S-1 (Z) | S-2 (Y) | S-3 (X) | ||||
Test | Simulation | Test | Simulation | Test | Simulation | |
1.0 | 40.72 | 48.01 | 6.01 | 9.86 | 7.22 | 7.65 |
1.5 | 49.21 | 56.26 | 8.02 | 11.09 | 8.52 | 8.77 |
2.0 | 50.29 | 46.66 | 8.23 | 10.83 | 9.75 | 9.52 |
2.5 | 49.23 | 45.15 | 10.12 | 9.31 | 10.02 | 10.50 |
3.0 | 51.36 | 44.06 | 8.96 | 9.92 | 10.95 | 10.75 |
3.5 | 49.36 | 47.83 | 11.25 | 11.37 | 9.53 | 12.82 |
4.0 | 42.67 | 48.18 | 10.63 | 11.02 | 14.23 | 13.90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, G.; Li, Z.; Song, G. A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads. Sensors 2018, 18, 1682. https://doi.org/10.3390/s18061682
Du G, Li Z, Song G. A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads. Sensors. 2018; 18(6):1682. https://doi.org/10.3390/s18061682
Chicago/Turabian StyleDu, Guofeng, Zhao Li, and Gangbing Song. 2018. "A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads" Sensors 18, no. 6: 1682. https://doi.org/10.3390/s18061682
APA StyleDu, G., Li, Z., & Song, G. (2018). A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads. Sensors, 18(6), 1682. https://doi.org/10.3390/s18061682