Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heating Element and Thermal Interface
2.2. Thermal Modelling
2.3. Experimental Setup for Thermal Characterization
3. Results and Discussion
3.1. Characterization of Heating Element
3.2. Steady-State Thermal Analysis
3.3. Transient Thermal Analysis
4. Conclusions
5. Patents
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Dye, C. After 2015: Infectious diseases in a new era of health and development. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130426. [Google Scholar] [CrossRef] [PubMed]
- Satterwhite, C.L.; Torrone, E.; Meites, E.; Dunne, E.F.; Mahajan, R.; Ocfemia, M.C.B.; Su, J.; Xu, F.; Weinstock, H. Sexually Transmitted Infections among US Women and Men: Prevalence and Incidence Estimates, 2008. Sex. Trans. Dis. 2013, 40, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Drain, P.K.; Hyle, E.P.; Noubary, F.; Freedberg, K.A.; Wilson, D.; Bishai, W.R.; Rodriguez, W.; Bassett, I.V. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis. 2014, 14, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Pamula, V.K.; Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 2004, 4, 310. [Google Scholar] [CrossRef] [PubMed]
- Mark, D.; Haeberle, S.; Roth, G.; Von Stetten, F.; Zengerle, R. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications. In Microfluidics Based Microsystems; Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 305–376. ISBN 978-90-481-9028-7. [Google Scholar]
- Pais, A.; Banerjee, A.; Klotzkin, D.; Papautsky, I. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip 2008, 8, 794. [Google Scholar] [CrossRef] [PubMed]
- Craw, P.; Balachandran, W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab Chip 2012, 12, 2469. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Notomi, T. Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 2009, 15, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Asiello, P.J.; Baeumner, A.J. Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 2011, 11, 1420. [Google Scholar] [CrossRef] [PubMed]
- Oblath, E.A.; Henley, W.H.; Alarie, J.P.; Ramsey, J.M. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip 2013, 13, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, S.; Nestler, J.; Otto, T.; Wegener, M.; Ehrentreich-Förster, E.; Michel, D.; Wunderlich, K.; Palzer, S.; Sohn, K.; Weber, A.; et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 2012, 12, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Rival, A.; Jary, D.; Delattre, C.; Fouillet, Y.; Castellan, G.; Bellemin-Comte, A.; Gidrol, X. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip 2014, 14, 3739–3749. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Quyen, T.L.; Hung, T.Q.; Chin, W.H.; Wolff, A.; Bang, D.D. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples. Lab Chip 2015, 15, 1898–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, S.; Roth, R.B.; Stiles, J.; Mikhlina, A.; Lu, X.; Tang, Y.-W.; Babady, N.E. Evaluation of Alere I Influenza A&B for Rapid Detection of Influenza Viruses A and B. J. Clin. Microbiol. 2014, 52, 3339–3344. [Google Scholar] [CrossRef] [PubMed]
- Kaprou, G.; Papadakis, G.; Kokkoris, G.; Papadopoulos, V.; Kefala, I.; Papageorgiou, D.; Gizeli, E.; Tserepi, A. Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics. In Bio-MEMS and Medical Microdevices II; van den Driesche, S., Ed.; International Society for Optics and Photonics: Bellingham, DC, USA, 2015; p. 95180G. [Google Scholar]
- Gurrala, R.; Lang, Z.; Shepherd, L.; Davidson, D.; Harrison, E.; McClure, M.; Kaye, S.; Toumazou, C.; Cooke, G.S. Novel pH sensing semiconductor for point-of-care detection of HIV-1 viremia. Sci. Rep. 2016, 6, 36000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafleur, L.K.; Bishop, J.D.; Heiniger, E.K.; Gallagher, R.P.; Wheeler, M.D.; Kauffman, P.; Zhang, X.; Kline, E.C.; Buser, J.R.; Kumar, S.; et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 2016. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Lien, K.-Y.; Wang, T.-Y.; Chen, T.-Y.; Lee, G.-B. An integrated microfluidic loop-mediated-isothermal-amplification system for rapid sample pre-treatment and detection of viruses. Biosens. Bioelectron. 2011, 26, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Moschou, D.; Vourdas, N.; Kokkoris, G.; Papadakis, G.; Parthenios, J.; Chatzandroulis, S.; Tserepi, A. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sens. Actuators B Chem. 2014, 199, 470–478. [Google Scholar] [CrossRef]
- Maltezos, G.; Johnston, M.; Scherer, A. Thermal management in microfluidics using micro-Peltier junctions. Appl. Phys. Lett. 2005, 87, 154105. [Google Scholar] [CrossRef] [Green Version]
- Maltezos, G.; Gomez, A.; Zhong, J.; Gomez, F.A.; Scherer, A. Microfluidic polymerase chain reaction. Appl. Phys. Lett. 2008, 93, 243901. [Google Scholar] [CrossRef] [Green Version]
- Van Bokestal, A.M.A.; Belhomme, C.J.G.; North American Philips Lighting Corp. Self-Regulating Heating Element. U.S. Patent 4104509A, 23 September 1975. [Google Scholar]
- Khazai, B.; Nichols, G.M. Nichols Self-Regulating Polymer Composite Heater. U.S. Patent 5,902,518, 11 May 1999. [Google Scholar]
- Wyzkiewicz, I.; Grabowska, I.; Chudy, M.; Brzozka, Z.; Jakubowska, M.; Wisniewski, T.; Dybko, A. Self-regulating heater for microfluidic reactors. Sens. Actuators B Chem. 2006, 114, 893–896. [Google Scholar] [CrossRef]
- Buser, J.R.; Diesburg, S.; Singleton, J.; Guelig, D.; Bishop, J.D.; Zentner, C.; Burton, R.; LaBarre, P.; Yager, P.; Weigl, B.H. Precision chemical heating for diagnostic devices. Lab Chip 2015, 15, 4423–4432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigl, B.; Domingo, G.; LaBarre, P.; Gerlach, J. Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 2008, 8, 1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sema, M.; Alemu, A.; Bayih, A.; Getie, S.; Getnet, G.; Guelig, D.; Burton, R.; LaBarre, P.; Pillai, D.R. Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia. Malar. J. 2015, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Bar-Cohen, A.; Wang, P. On-Chip Thermal Management and Hot-Spot Remediation. In Nano-Bio-Electronic, Photonic and MEMS Packaging; Wong, C.P., Moon, K.-S., Li, Y., Eds.; Springer: Boston, MA, USA, 2010; pp. 349–429. ISBN 978-1-4419-0039-5. [Google Scholar]
- Streit, P.; Nestler, J.; Shaporin, A.; Graunitz, J.; Otto, T. Design methodology and results evaluation of a heating functionality in modular lab-on-chip systems. J. Micromech. Microeng. 2018, 28, 064001. [Google Scholar] [CrossRef] [Green Version]
- Pardy, T.; Rang, T.; Tulp, I. Finite element modelling of the resistive heating of disposable molecular diagnostics devices. In WIT Transactions on Modelling and Simulation; WIT Press: Opatija, Croatia, 2015; pp. 381–391. [Google Scholar]
- Pardy, T.; Rang, T.; Tulp, I. Modelling and experimental characterisation of thermoelectric heating for molecular diagnostics devices. In Proceedings of the 2016 15th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 3–5 October 2016; pp. 27–30. [Google Scholar]
- Pardy, T.; Tulp, I.; Rang, T. Finite Element Modelling for the Optimization of Microheating in Disposable Molecular Diagnostics. In WIT Transactions on Engineering Sciences; WIT Press: Ancona, Italy, 2016; Volume 106. [Google Scholar]
- Pardy, T.; Rang, T.; Tulp, I. Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT). Micromachines 2017, 8, 180. [Google Scholar] [CrossRef]
- Pardy, T.; Tulp, I.; Kremer, C.; Rang, T.; Stewart, R. Integrated self-regulating resistive heating for isothermal nucleic acid amplification tests (NAAT) in Lab-on-a-Chip (LoC) devices. PLoS ONE 2017, 12, e0189968. [Google Scholar] [CrossRef] [PubMed]
- Tulp, I.; Krolov, K.; Lehes, M.; Langel, U. Method and Its Compositions for Detection of Nucleic Acid Target from Biological Samples and Body Fluids. U.S. Patent 14/437,110, 12 November 2012. [Google Scholar]
- Jevtuševskaja, J.; Uusna, J.; Andresen, L.; Krõlov, K.; Laanpere, M.; Grellier, T.; Tulp, I.; Langel, Ü. Combination with antimicrobial peptide lyses improves loop-mediated isothermal amplification based method for Chlamydia trachomatis detection directly in urine sample. BMC Infect. Dis. 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Krõlov, K.; Frolova, J.; Tudoran, O.; Suhorutsenko, J.; Lehto, T.; Sibul, H.; Mäger, I.; Laanpere, M.; Tulp, I.; Langel, Ü. Sensitive and Rapid Detection of Chlamydia trachomatis by Recombinase Polymerase Amplification Directly from Urine Samples. J. Mol. Diagn. 2014, 16, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Oscorbin, I.P.; Boyarskikh, U.A.; Filipenko, M.L. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications. Mol. Biotechnol. 2015, 57, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Friess, H.; Haussener, S.; Steinfeld, A.; Petrasch, J. Tetrahedral mesh generation based on space indicator functions: Tetrahedral mesh generation based on space indicator functions. Int. J. Numer. Methods Eng. 2013, 93, 1040–1056. [Google Scholar] [CrossRef]
Heating Solution | Self-Contained? | Thermostat? | Chip Dimensions [cm] | Power Consumption [W] | End-User Device Price (Estimate) [€] | Source |
---|---|---|---|---|---|---|
External Peltier | No | Yes | ~4 × 4 × 2 | min. 80 | ~1000–10,000 | [10,11,12,13] |
Integrated resistive | Examples available | Yes | ~8 × 3 × 1 | ~2–3 | ~500–5000 | [15,16,17,18,19] |
Integrated μ-Peltier | No | Yes | ~2 × 2 × 0.3 | ~2–3 | ~500–5000 | [20,21,28] |
Integrated self-regulating | Not reported | No | ~5 × 5 × 0.3 | ~1.2–0.8 | ~500–1000 | [24,29] |
Integrated polymer resin PTCR | Yes | No | 5.5 × 9 × 0.75 | 1–0.6 | ~20–50 | This work |
Material | Density [kg/m3] | Thermal Conductivity [W/mK] | Specific Heat Capacity [J/kgK] | Electrical Conductivity [S/m] |
---|---|---|---|---|
PTCR heater resin | 2250 | 1.26 | 1000 | 0.3–0.06 (20–65 °C range) |
Aluminum | 2700 | 238 | 900 | 37.7 × 106 |
Copper | 8960 | 400 | 385 | 59.9 × 106 |
Polycarbonate | 1200 | 0.14 | 1250 | Not relevant |
Air | 1225 | 0.024 | 1000 | Not relevant |
Water | 1000 | 0.6 | 4184 | Not relevant |
Polyurethane | 1250 | 0.3 | 1760 | Not relevant |
Acrylic foam | 850 | 0.18 | 1470 | Not relevant |
Paper (LF strip) | 1500 | 0.05 | 1340 | Not relevant |
Steel | 7850 | 44.5 | 475 | 4.03 × 106 |
Boundary Condition | Boundary | Initial Value (If Applicable) |
---|---|---|
Ambient temperature | External boundaries | As defined in text |
Ambient pressure (absolute) | External boundaries | 1 atm |
Electric potential | Heater (top) | 3 V |
Ground | Heater (bottom) | 0 V |
Convective heat loss | External boundaries | Not applicable |
Electrical insulation | Heater boundaries except contacts | Not applicable |
Radiative heat loss | External boundaries | Not applicable |
Joule heating (boundary) | Heater boundaries | Not applicable |
Ambient Temperature [°C] | Heat-Up Time to 57 °C [min] | Time Constant [min] | Power Consumption [W] |
---|---|---|---|
15 | 20 | 27.5 | 0.94 |
20 | 10.5 | 27 | 0.86 |
25 | 8.5 | 27.5 | 0.84 |
30 | 5.5 | 26 | 0.76 |
Ambient Temperature [°C] | Experimental Steady-State [°C] | Simulated Steady-State [°C] | Reaction Volume in Range [%] |
---|---|---|---|
15 | 57.5 | 57.3 | 24 |
20 | 59.5 | 59.2 | 92 |
25 | 59.9 | 60.3 | 100 |
30 | 62.3 | 63.1 | 56 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardy, T.; Rang, T.; Tulp, I. Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform. Sensors 2018, 18, 1812. https://doi.org/10.3390/s18061812
Pardy T, Rang T, Tulp I. Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform. Sensors. 2018; 18(6):1812. https://doi.org/10.3390/s18061812
Chicago/Turabian StylePardy, Tamás, Toomas Rang, and Indrek Tulp. 2018. "Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform" Sensors 18, no. 6: 1812. https://doi.org/10.3390/s18061812
APA StylePardy, T., Rang, T., & Tulp, I. (2018). Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform. Sensors, 18(6), 1812. https://doi.org/10.3390/s18061812