TM02 Quarter-Mode Substrate-Integrated Waveguide Resonator for Dual Detection of Chemicals
Abstract
:1. Introduction
2. Sensor Design
2.1. Theory
2.2. Design of Dual-Detection Chemical Sensor
2.3. Design of Asymmetric Microfluidic Channels
2.4. Optimized Geometry and Effective Volume of Microfluidic Channels
3. Simulation Analysis
Sensitivity Analysis
4. Fabrication and Measurement
4.1. Fabrication
4.2. Measurement
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stich, M.I.J.; Fischer, L.H.; Wolfbeis, O.S. Multiple fluorescent chemical sensing and imaging. Chem. Soc. Rev. 2010, 39, 3102–3114. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Goldberg, A.F.; Stoltz, B.M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics, 2nd ed.; Addison Wesley Inc.: Boston, MA, USA, 1989; ISBN 0-201-01239-1. [Google Scholar]
- Kang, H.; Lim, S. Enhanced-gain planar substrate-integrated waveguide cavity-backed slot antenna with rectangular slot window on superstrate. ETRI J. 2014, 36, 1062–1065. [Google Scholar] [CrossRef]
- Park, W.; Lim, S. A Low Phase-Noise Microwave Oscillator Using a Substrate Integrated Waveguide Resonator based on Complementary Split Ring Resonator. In Proceedings of the Asia-Pacific Microwave Conference 2011, Melbourne, VIC, Australia, 5–8 December 2011; pp. 371–374. [Google Scholar]
- Eom, D.; Lee, H. A Broadband Half-Mode Substrate Integrated Waveguide Quadrature Wilkinson Power Divider Using Composite Right/Left-Handed Transmission Line. J. Electromagn. Eng. Sci. 2017, 17, 9–13. [Google Scholar] [CrossRef]
- El Matbouly, H.; Boubekeur, N.; Domingue, F. Passive Microwave Substrate Integrated Cavity Resonator for Humidity Sensing. IEEE Trans. Microw. Theory Tech. 2015, 63, 4150–4156. [Google Scholar] [CrossRef]
- Ndoye, M.; El Matbouly, H.; Sama, Y.N.; Deslandes, D.; Domingue, F. Sensitivity evaluation of dielectric perturbed substrate integrated resonators for hydrogen detection. Sens. Actuators A Phys. 2016, 251, 198–206. [Google Scholar] [CrossRef]
- Bozzi, M.; Georgiadis, A.; Wu, K. Review of substrate-integrated waveguide circuits and antennas. IET Microw. Antennas Propag. 2011, 5, 909–920. [Google Scholar] [CrossRef]
- Liu, B.; Hong, W.; Wang, Y.Q.; Lai, Q.H.; Wu, K. Half Mode Substrate Integrated Waveguide (HMSIW) 3-dB coupler. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 22–24. [Google Scholar] [CrossRef]
- Dong, Y.; Itoh, T. Composite Right/Left-Handed Substrate Integrated Waveguide and Half Mode Substrate Integrated Waveguide Leaky-Wave Structures. IEEE Trans. Antennas Propag. 2011, 59, 767–775. [Google Scholar] [CrossRef]
- Memon, M.U.; Lim, S. Frequency-tunable compact antenna using quarter-mode substrate integrated waveguide. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1606–1609. [Google Scholar] [CrossRef]
- Eom, S.; Memon, M.; Lim, S. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Sensors 2017, 17, 699. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Memon, M.U.; Lim, S. Microfluidic Eighth-Mode Substrate-Integrated- Waveguide Antenna for Compact Ethanol Chemical Sensor Application. IEEE Trans. Antennas Propag. 2016, 64, 3218–3222. [Google Scholar] [CrossRef]
- Sam, S.; Lim, S. Electrically small eighth-mode substrate-integrated waveguide (EMSIW) antenna with different resonant frequencies depending on rotation of complementary split ring resonator. IEEE Trans. Antennas Propag. 2013, 61, 4933–4939. [Google Scholar] [CrossRef]
- Azad, A.R.; Mohan, A. A compact sixteenth-mode substrate integrated waveguide bandpass filter with improved out-of-band performance. Microw. Opt. Technol. Lett. 2017, 59, 1728–1733. [Google Scholar] [CrossRef]
- Jones, T.R.; Zarifi, M.H.; Daneshmand, M. Miniaturized Quarter-Mode Substrate Integrated Cavity Resonators for Humidity Sensing. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 612–614. [Google Scholar] [CrossRef]
- Jin, C.; Li, R.; Alphones, A.; Bao, X. Quarter-mode substrate integrated waveguide and its application to antennas design. IEEE Trans. Antennas Propag. 2013, 61, 2921–2928. [Google Scholar] [CrossRef]
- Jin, C.; Shen, Z.; Member, S. Compact Triple-Mode Filter Based on Quarter-Mode Substrate Integrated Waveguide. IEEE Trans. Microw. Theory Tech. 2014, 62, 37–45. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Sadabadi, H.; Hejazi, S.H.; Daneshmand, M.; Sanati-Nezhad, A. Noncontact and Nonintrusive Microwave-Microfluidic Flow Sensor for Energy and Biomedical Engineering. Sci. Rep. 2018, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Srivastava, K.V. An Angularly Stable Dual-Band FSS with Closely Spaced Resonances Using Miniaturized Unit Cell. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 218–220. [Google Scholar] [CrossRef]
- Trungo, N.T.; Lim, S. Metamaterial Absorber using Complementary Circular Sector Resonator. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 176–177. [Google Scholar]
- Smith, D.R.; Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Salim, A.; Jeong, H.; Lim, S. High-efficiency and compact metamaterial-inspired 900 MHz rectifier. J. Microw. Power Electromagn. Energy 2016, 50, 168–181. [Google Scholar] [CrossRef]
- Kim, G.; Lee, B. Synthesis of Bulk Medium with Negative Permeability Using Ring Resonators. J. Electromagn. Eng. Sci. 2016, 16, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Sadeqi, A.; Sonkusale, S. Low-cost metamaterial-on-paper chemical sensor. Optics Express 2017, 25, 16092–16100. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Caloz, C.; Itoh, T. Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna With Tunable. IEEE Trans. Microw. Theory Tech. 2004, 52, 2678–2690. [Google Scholar] [CrossRef]
- Eom, S.; Lim, S. Stretchable complementary split ring resonator (CSRR)-based radio frequency (RF) sensor for strain direction and level detection. Sensors 2016, 16, 1667. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Eom, S.; Tentzeris, M.M.; Lim, S. Inkjet-Printed Electromagnet-Based Touchpad Using Spiral Resonators. J. Microelectromech. Syst. 2016, 25, 947–953. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Fumeaux, C.; Abbott, D. Metamaterial-Inspired Multichannel Thin-Film Sensor. IEEE Sens. J. 2012, 12, 1455–1458. [Google Scholar] [CrossRef] [Green Version]
- Byford, J.A.; Park, K.Y.; Chahal, P. Metamaterial inspired periodic structure used for microfluidic sensing. In Proceedings of the IEEE 65th Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2015; pp. 1997–2002. [Google Scholar]
- Velez, P.; Su, L.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martin, F. Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids. IEEE Sens. J. 2017, 17, 6589–6598. [Google Scholar] [CrossRef]
- Jankovic, N.; Radonic, V. A microwave microfluidic sensor based on a dual-mode resonator for dual-sensing applications. Sensors 2017, 17, 2713. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Memon, M.; Lim, S. Simultaneous Detection of Two Chemicals Using a TE20-Mode Substrate-Integrated Waveguide Resonator. Sensors 2018, 18, 811. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Lim, S. Review of Recent Metamaterial Microfluidic Sensors. Sensors 2018, 18, 232. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Lim, S. Review of recent inkjet-printed capacitive tactile sensors. Sensors 2017, 17, 2593. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Lim, S. High-Q and miniaturized complementary split ring resonator-loaded substrate integrated waveguide microwave sensor for crack detection in metallic materials. Sens. Actuators A Phys. 2014, 214, 25–30. [Google Scholar] [CrossRef]
- Guo, Z.; Chin, K.S.; Che, W.; Chang, C.C. Cross-coupled bandpass filters using QMSIW cavities and S-shaped slot coupling structures. J. Electromagn. Waves Appl. 2013, 27, 160–167. [Google Scholar] [CrossRef]
- Memon, M.U.; Lim, S. Review of reconfigurable substrate-integrated-waveguide antennas. J. Electromagn. Waves Appl. 2014, 28, 1815–1833. [Google Scholar] [CrossRef]
- Memon, M.U.; Lim, S. Millimeter-wave chemical sensor using substrate-integrated-waveguide cavity. Sensors 2016, 16, 1829. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Lim, S. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor. Sensors 2016, 16, 1802. [Google Scholar] [CrossRef] [PubMed]
- Meissner, T.; Wentz, F.J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1836–1849. [Google Scholar] [CrossRef] [Green Version]
- Gregory, A.P.; Clarke, R.N. Tables of the Complex. Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz; NPL Report MAT 23; National Physical Laboratory: Teddington, UK, 2012. [Google Scholar]
- Memon, M.U. Microfluidic High-Q Circular Substrate-Integrated Waveguide (SIW) Cavity for Radio Frequency (RF) Chemical Liquid Sensing. Sensors 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Pozar, D.M. Microwave Engineering; Wiley: Hoboken, NJ, USA, 1998; ISBN 0-471-17096-8. [Google Scholar]
- Salim, A.; Kim, S.; Park, J.Y.; Lim, S. Microfluidic Biosensor Based on Microwave Substrate Integrated Waveguide Cavity Resonator. J. Sens. 2018, 2018, 1324145. [Google Scholar] [CrossRef]
- Awang, R.A.; Tovar-Lopez, F.J.; Baum, T.; Sriram, S.; Rowe, W.S.T. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids. J. Appl. Phys. 2017, 121, 094506. [Google Scholar] [CrossRef]
- Swiontek, S.E.; Pulsifer, D.P.; Lakhtakia, A. Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform. Sci. Rep. 2013, 3, 1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarifi, M.H.; Farsinezhad, S.; Wiltshire, B.D.; Abdorrazaghi, M.; Mahdi, N.; Kar, P.; Daneshmand, M.; Shankar, K. Effect of phosphonate monolayer adsorbate on the microwave photoresponse of TiO2 nanotube membranes mounted on a planar double ring resonator. Nanotechnology 2016, 27, 375201. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Cheng, M.M.C.; Chen, J.C.M.; Wu, C.-T.M. Microwave Gas Sensor based on Graphene-loaded Substrate Integrated Waveguide Cavity Resonator. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 4–7. [Google Scholar]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
Ls | 30 | G | 0.1 | i | 2.8 |
Ws | 30 | hs | 1.27 | j | 1 |
L | 15 | a | 0.8 | k | 2.5 |
W | 17 | b | 7 | l | 5.5 |
D | 0.6 | c | 0.7 | m | 0.5 |
P | 1.1 | d | 1.1 | q | 0.9 |
Lm | 10.5 | e | 13 | hf | 0.05 |
Wm | 1.1 | g | 8 | hc | 0.6 |
Ch 1, Ch 2 | Simu. fr (GHz) | Simu. S11 (dB) | Meas. fr (GHz) | Meas. S11 (dB) | Relative Error in fr (%) |
---|---|---|---|---|---|
Air, Air | 5.79 | −7.10 | 5.791 | −7.14 | 0.02 |
Ethanol, DI water | 5.44 | −6.14 | 5.445 | −6.74 | 0.09 |
DI water, Ethanol | 5.61 | −18.81 | 5.614 | −17.28 | 0.07 |
Ethanol, Ethanol | 5.75 | −19.89 | 5.760 | −25.71 | 0.17 |
DI water, DI water | 5.32 | −5.99 | 5.321 | −6.74 | 0.02 |
Ref. | fo (GHz) | Δfmax * (MHz) | Technology | Electrical Length λg × λg | Sensing |
---|---|---|---|---|---|
This work | 5.81 | 470 | QMSIW | 1.62 × 1.07 | Dual |
[14] | 4.65 | 400 | EMSIW | 0.94 × 0.9 | Single |
[40] | 17.08 | 610 | SIW | 3 × 2.61 | Single |
[44] | 5 | 380 | SIW | 1.85 × 1.85 | Single |
[46] | 13.48 | 170 | SIW | 2.26 × 1.92 | Single |
Ref. | fo (GHz) | Δf * (MHz) | S (%) | Physical Size (mm × mm) | Electrical Size (λg × λg) |
---|---|---|---|---|---|
[34] | 8 | 430 | 5.37 | 60 × 40 | 2.37 × 1.58 |
[30] | 3 | 170 | 5.66 | 35 × 32 | 1.12 × 1.02 |
[31] | 6.5 | 400 | 6.15 | 30 × 22 | 1.13 × 0.86 |
[32] | 0.87 | 110 | 12.6 | 86 × 62 | 0.8 × 0.57 |
[33] | 2 | 200 | 10 | 50 × 40 | 1.4 × 1.12 |
This work | 5.77 | 31 | 8.1 | 30 × 30 | 1.62 × 1.07 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, A.; Lim, S. TM02 Quarter-Mode Substrate-Integrated Waveguide Resonator for Dual Detection of Chemicals. Sensors 2018, 18, 1964. https://doi.org/10.3390/s18061964
Salim A, Lim S. TM02 Quarter-Mode Substrate-Integrated Waveguide Resonator for Dual Detection of Chemicals. Sensors. 2018; 18(6):1964. https://doi.org/10.3390/s18061964
Chicago/Turabian StyleSalim, Ahmed, and Sungjoon Lim. 2018. "TM02 Quarter-Mode Substrate-Integrated Waveguide Resonator for Dual Detection of Chemicals" Sensors 18, no. 6: 1964. https://doi.org/10.3390/s18061964
APA StyleSalim, A., & Lim, S. (2018). TM02 Quarter-Mode Substrate-Integrated Waveguide Resonator for Dual Detection of Chemicals. Sensors, 18(6), 1964. https://doi.org/10.3390/s18061964