DNA-Based Sensor for the Detection of an Organophosphorus Pesticide: Profenofos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
- thiol-tethered oligonucleotide complementary sequence (oligo-SH): 5′-(SH)-(CH2)6-CCG ATC AAG AAT CGC TGC AG-3′;
- biotinylated DNA aptamer (apt-BIO): 5′-(biotin)-TEG(triethylene glycol)-AAG CTT GCT TTA TAG CCT GCA GCG ATT CTT GAT CGG AAA AGG CTG AGA GCT ACG C-3′.
- storage buffer: 10.0 mM TRIS buffer, pH 8.0;
- immobilisation buffer: 0.50 M phosphate buffer, pH 7.0;
- detection buffer: 0.10 M DEA buffer, 0.10 M KCl, 1.0 mM MgCl2, pH 9.6.
2.2. Apparatus
2.3. DNA Melting Curve Studies
2.4. Aptasensor Development
2.4.1. GSPEs Surface Modification by Electrodeposition of Polyaniline and Gold Nanoparticles
2.4.2. Electrochemical Characterisation of the Modified GSPEs
2.4.3. DNA Probe Immobilisation
2.4.4. Profenofos Detection
2.4.5. Enzymatic Labelling and Electrochemical Measurements
3. Results and Discussion
3.1. Studies on the Affinity of the DNA Aptamer for the Target Pesticide
3.2. Aptasensor Development
3.2.1. Modification of GSPEs with Polyaniline and Gold Nanoparticles
3.2.2. Competitive Assay
3.2.3. Profenofos Detection
3.2.4. Fruit Juice Samples Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization); WHO (World Health Organization). Manual on Development and Use of FAO and WHO Specifications for Pesticides. In FAO Plant Production and Protection Paper; FAO (Food and Agriculture Organization): Roma, Italy; WHO (World Health Organization): Geneva, Switzerland, 2016. [Google Scholar]
- Martin, L.J. Pesticide Exposure in Womb Linked to Lower IQ. Available online: https://www.webmd.com/baby/news/20110421/pesticide-exposure-in-womb-linked-to-lower-iq#1 (accessed on 2 May 2018).
- Verma, N.; Bhardwaj, A. Biosensor Technology for Pesticides—A review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. [Google Scholar] [CrossRef] [PubMed]
- Aceña, J.; Stampachiacchiere, S.; Pérez, S.; Barceló, D. Advances in liquid chromatography–high-resolution mass spectrometry for quantitative and qualitative environmental analysis. Anal. Bioanal. Chem. 2015, 407, 6289–6299. [Google Scholar] [CrossRef] [PubMed]
- Dobrat, W.; Martijn, A. Analysis of Technical and Formulated Pesticides. In CIPAC Handbook; Collaborative International Pesticides Analytical Council: Harpenden, UK, 1998; Volume H, p. 223. [Google Scholar]
- Mahajan, R.; Chatterjee, S. A simple HPLC–DAD method for simultaneous detection of two organophosphates, profenofos and fenthion, and validation by soil microcosm experiment. Environ. Monit. Assess. 2018, 190, 327. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.C.; Bilon, M.; Hay, M.T. Analytical Methods for Pesticide Residues in the Water Environment. Water Environ. Res. 2015, 87, 1923–1937. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, A. Biosensors for Pesticide Detection: New Trends. Am. J. Anal. Chem. 2012, 3, 210–232. [Google Scholar] [CrossRef]
- Rapini, R.; Cincinelli, A.; Marrazza, G. Acetamiprid multidetection by disposable electrochemical DNA aptasensor. Talanta 2016, 161, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Rapini, R.; Marrazza, G. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wan, Y.; Ali, A.; Deng, S.; Su, Y.; Fan, C.; Yang, S. Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 2016, 59, 237–242. [Google Scholar] [CrossRef]
- Bala, R.; Dhingra, S.; Kumar, M.; Bansal, K.; Mittal, S.; Sharma, R.K.; Wangoo, N. Detection of organophosphorus pesticide—Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem. Eng. J. 2017, 311, 111–116. [Google Scholar] [CrossRef]
- Xu, G.; Huo, D.; Hou, C.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 2018, 178, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Gao, N.; Peng, Y.; Guo, C.; Lv, Z.; Wang, Y.; Zhou, C.; Ning, B.; Liu, M.; Gao, Z. Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Control 2012, 25, 543–549. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 2016, 79, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhao, G.; Cao, T.; Liu, M.; Guan, C.; Huang, X.; Zhu, Z.; Yang, N.; Williams, O.A. Selective and visible-light-driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes. Electrochem. Commun. 2012, 19, 111–114. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Zhang, Q.; Zhang, C.; Liu, Y.; Tu, K.; Tu, J. Selection of DNA aptamers that bind to four organophosphorus pesticides. Biotechnol. Lett. 2012, 34, 869–874. [Google Scholar] [CrossRef] [PubMed]
- The Mfold Web Server. Available online: http://unafold.rna.albany.edu/?q=mfold/DNA-Folding-Form (accessed on 2 May 2018).
- Saberi, R.-S.; Shahrokhian, S.; Marrazza, G. Amplified Electrochemical DNA Sensor Based on Polyaniline Film and Gold Nanoparticles. Electroanalysis 2013, 25, 1373–1380. [Google Scholar] [CrossRef]
- Ravalli, A.; Rossi, C.; Marrazza, G. Bio-inspired fish robot based on chemical sensors. Sens. Actuators B Chem. 2017, 239, 325–329. [Google Scholar] [CrossRef]
- Lucarelli, F.; Marrazza, G.; Mascini, M. Dendritic-like streptavidin/alkaline phosphatase nanoarchitectures for amplified electrochemical sensing of DNA sequences. Langmuir 2006, 22, 4305–4309. [Google Scholar] [CrossRef] [PubMed]
- Centi, S.; Silva, E.; Laschi, S.; Palchetti, I.; Mascini, M. Polychlorinated biphenyls (PCBs) detection in milk samples by an electrochemical magneto-immunosensor (EMI) coupled to solid-phase extraction (SPE) and disposable low-density arrays. Anal. Chim. Acta 2007, 594, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Picelli, G.; Harrison, D.J. An evaluation of the detection limits possible for competitive capillary electrophoretic immunoassays. Electrophoresis 2001, 22, 3699–3708. [Google Scholar] [CrossRef]
- Deshpande, L.S.; Carter, D.S.; Phillips, K.F.; Blair, R.E.; De Lorenzo, R.J. Development of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of lethal paraoxon intoxication. Neurotoxicology 2014, 44, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Tm (°C) |
---|---|
Apt-BIO | 54.0 |
Apt-BIO + oligo-SH | 58.0 |
Apt-BIO + profenofos | 57.0 |
Profenofos Spiked (µM) | Profenofos Found (µM) | Recovery (%) | Bias (%) | % RSD |
---|---|---|---|---|
1.0 | 0.87 | 87 | −13 | 10 |
3.0 | 2.45 | 82 | −18 | 15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvolini, G.; Băjan, I.; Hosu, O.; Cristea, C.; Săndulescu, R.; Marrazza, G. DNA-Based Sensor for the Detection of an Organophosphorus Pesticide: Profenofos. Sensors 2018, 18, 2035. https://doi.org/10.3390/s18072035
Selvolini G, Băjan I, Hosu O, Cristea C, Săndulescu R, Marrazza G. DNA-Based Sensor for the Detection of an Organophosphorus Pesticide: Profenofos. Sensors. 2018; 18(7):2035. https://doi.org/10.3390/s18072035
Chicago/Turabian StyleSelvolini, Giulia, Ioana Băjan, Oana Hosu, Cecilia Cristea, Robert Săndulescu, and Giovanna Marrazza. 2018. "DNA-Based Sensor for the Detection of an Organophosphorus Pesticide: Profenofos" Sensors 18, no. 7: 2035. https://doi.org/10.3390/s18072035
APA StyleSelvolini, G., Băjan, I., Hosu, O., Cristea, C., Săndulescu, R., & Marrazza, G. (2018). DNA-Based Sensor for the Detection of an Organophosphorus Pesticide: Profenofos. Sensors, 18(7), 2035. https://doi.org/10.3390/s18072035