Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure
Abstract
:1. Introduction
2. Sensor Configuration and Theoretical Model
3. Results and Discussions
- (1)
- When the thickness of Al thin film is fixed, the sensitivity increases with more MX2 layers mainly due to the enhanced light energy absorption. However, it will decrease rapidly when the number of MX2 layers exceeds the optimal number which is defined as the number of MX2 layers with the highest sensitivity.
- (2)
- The optimal numbers of MX2 layers will increase when the thickness of Al increases.
- (3)
- With the same thickness of Al thin film, the enhancement effect offered by different kinds of MX2 are not the same.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Otto, A. Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection. Zeitschrift für Physik a Hadrons and Nuclei 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative decay of nonradiative surface plasmons excited by light. Zeitschrift für Naturforschung A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Ahn, H.; Song, H.; Choi, J.R.; Kim, K. Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches. Sensors 2018, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Sreekanth, K.V.; Shang, J.; Yu, T.; Chen, C.K.; Yin, F.; Baillargeat, D.; Coquet, P.; Ho, H.P.; Kabashin, A.V.; et al. Graphene–Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing. Adv. Mater. 2015, 27, 6163–6169. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, C.; Yang, R.; Liu, W.; Sun, S. A Sensitive and Stable Surface Plasmon Resonance Sensor Based on Monolayer Protected Silver Film. Sensors 2017, 17, 2777. [Google Scholar] [CrossRef] [PubMed]
- Maurya, J.B.; François, A.; Prajapati, Y.K. Two-Dimensional Layered Nanomaterial-Based One-Dimensional Photonic Crystal Refractive Index Sensor. Sensors 2018, 18, 857. [Google Scholar] [CrossRef] [PubMed]
- Kooyman, R.P.H. Handbook of surface plasmon resonance. R. Soc. Chem. 2008, 2, 15–34. [Google Scholar]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Humbert, G.; Gong, T.; Shum, P.P.; Li, K.; Auguste, J.L.; Wu, Z.; Hu, J.; Feng, L.; Dinh, Q.X.; et al. Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators B Chem. 2016, 233, 195–201. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D.; Jha, R. Sensitivity enhancement of a surface plasmon resonance based on biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 2011, 160, 623–631. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.Q.; Meng, X.M.; Coquet, P.; Yong, K.T. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Wu, L.; Jia, Y.; Jiang, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure. J. Lightwave Technol. 2016, 35, 82–87. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Dinh, X.Q.; Coquet, P.; Yong, K.T. Sensitivity enhancement of MoS2 nanosheet based surface Plasmon resonance biosensor. Procedia Eng. 2016, 140, 134–139. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B. Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Khageswar, S.; Kumar, M.S.; Kumar, G.P. He-Ne laser (632.8 nm) pre-irradiation gives protection against DNA damage induced by a near-infrared trapping beam. J. Biophotonics 2009, 2, 140–144. [Google Scholar]
- Sreekanth, K.V.; Zeng, S.; Yong, K.T.; Yu, T. Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B. Chem. 2013, 182, 424–428. [Google Scholar] [CrossRef]
- Jha, R.; Sharma, A.K. Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region. J. Opt. Pure Appl. Opt. 2009, 11, 045502. [Google Scholar] [CrossRef]
- Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H.M.; van der Zande, A.M.; Chenet, D.A.; Shih, E.M.; Hone, J.; Heinz, T.F. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 90, 205–422. [Google Scholar] [CrossRef]
- Liu, H.L. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 2014, 105, 201905. [Google Scholar] [CrossRef] [Green Version]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 031901. [Google Scholar] [CrossRef]
- Wu, L.; Ling, Z.; Jiang, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. Long-Range Surface Plasmon with Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Maharana, P.K.; Jha, R.; Palei, S. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B Chem. 2014, 190, 494–501. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Wen, A.M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; Steinmetz, N.F.; Strangi, G. Enhancing the Angular Sensitivity of Plasmonic Sensors Using Hyperbolic Metamaterials. Adv. Opt. Mater. 2016, 4, 1767–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcoran, B.; Monat, C.; Grillet, C.; Moss, D.J.; Eggleton, B.J.; White, T.P.; O'Faolain, L.; Krauss, T.F. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguidese. Nat. Photonics 2009, 3, 206–210. [Google Scholar] [CrossRef]
- Song, C.L.; Jin, T.; Yan, R.P.; Qi, W.Z.; Huang, T.Y.; Ding, H.F.; Tan, S.H.; Nguyen, N.T.; Xi, L. Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels. Lab Chip 2018, 9, 1267–1390. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Yu, X.; Law, W.C.; Zhang, Y.; Hu, R.; Dinh, X.Q.; Ho, H.P.; Yong, K.T. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B Chem. 2013, 176, 1128–1133. [Google Scholar] [CrossRef]
- Raether, H. Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts Mod. Phys. 1983, 111, 354401–373633. [Google Scholar]
- Wong, C.L.; Chua, M.; Mittman, H.; Choo, L.X.; Lim, H.Q.; Olivo, M. A Phase-Intensity Surface Plasmon Resonance Biosensor for Avian Influenza A (H5N1) Detection. Sensors 2017, 17, 2363. [Google Scholar] [CrossRef] [PubMed]
Type of TMDC | Thickness of Monolayer (nm) | Refractive Index | Dielectric Constant |
---|---|---|---|
MoS2 | 0.65 | 5.0805 + 1.1723i | 24.4368 + 11.9121i |
MoSe2 | 0.70 | 4.6226 + 1.0063i | 20.3560 + 9.3039i |
WS2 | 0.80 | 4.8937 + 0.3124i | 23.8511 + 3.0578i |
WSe2 | 0.70 | 4.5501 + 0.4332i | 20.5156 + 3.9423i |
Type of TMDC | Optimal Thickness of Al (nm) | Optimal Number of TMDC Layers | Angular Sensitivity (Δn = 0.005) |
---|---|---|---|
MoS2 | 22 | 3 | 214.8 Deg/RIU |
MoSe2 | 24 | 4 | 210.1 Deg/RIU |
WS2 | 36 | 7 | 315.5 Deg/RIU |
WSe2 | 30 | 7 | 286.3 Deg/RIU |
Type of TMDC | Optimal Thickness of Al (nm) | Optimal Number of TMDC Layers | Angular Sensitivity (Δn = 0.005) |
---|---|---|---|
MoS2 | 40 | 2 | 6.32 × 105 Deg/RIU |
MoSe2 | 40 | 2 | 1.54 × 105 Deg/RIU |
WS2 | 46 | 1 | 3.85 × 106 Deg/RIU |
WSe2 | 44 | 1 | 4.57 × 105 Deg/RIU |
2D Material | Metal | Angular Sensitivity | Phase Sensitivity | References |
---|---|---|---|---|
Graphene | Au | 134.6 Deg/RIU | - | [12] |
Graphene and MoS2 | Al | 190.4 Deg/RIU | - | [13] |
Graphene and MoS2 | Au | - | 8.19 × 104 Deg/RIU | [14] |
WS2 | Au | 155.7 Deg/RIU | - | [15] |
WSe2 | Au | - | 1.20 × 106 Deg/RIU | [15] |
BP and TMDCs/graphene | Ag | 279.0 Deg/RIU | 6.75 × 103 Deg/RIU | [16] |
WS2 and graphene | Al | 315.5 Deg/RIU | - | This work |
WS2 and graphene | Ag | - | 3.85 × 106 Deg/RIU | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Huang, T.; Ping, P.S.; Wu, X.; Huang, P.; Pan, J.; Wu, Y.; Cheng, Z. Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure. Sensors 2018, 18, 2056. https://doi.org/10.3390/s18072056
Zhao X, Huang T, Ping PS, Wu X, Huang P, Pan J, Wu Y, Cheng Z. Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure. Sensors. 2018; 18(7):2056. https://doi.org/10.3390/s18072056
Chicago/Turabian StyleZhao, Xiang, Tianye Huang, Perry Shum Ping, Xu Wu, Pan Huang, Jianxing Pan, Yiheng Wu, and Zhuo Cheng. 2018. "Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure" Sensors 18, no. 7: 2056. https://doi.org/10.3390/s18072056
APA StyleZhao, X., Huang, T., Ping, P. S., Wu, X., Huang, P., Pan, J., Wu, Y., & Cheng, Z. (2018). Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure. Sensors, 18(7), 2056. https://doi.org/10.3390/s18072056