Design of Security Paper with Selective Frequency Reflection Characteristics
Abstract
:1. Introduction
2. Design and Fabrication of the Security Paper
2.1. Design of Frequency Selective Structure
2.2. Fabrication of Security Paper
3. Security Paper Validation
3.1. Measurement of the Frequency Characteristics of Security Paper
3.2. Measurement of the Security Paper Using a Detector
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mikkilineni, A.K.; Ali, G.N.; Chiang, P.J.; Chiu, G.T.C.; Allebach, J.P.; Delp, E.J. Signature-Embedding in Printed Documents for Security and Forensic Applications. In Proceedings of the SPIE 5306, Security, Steganography, and Watermarking of Multimedia Contents VI, San Jose, CA, USA, 18–22 January 2004; Volume 5306. [Google Scholar]
- Mikkilineni, A.K.; Chiang, P.J.; Ali, G.N.; Chiu, G.T.C.; Allebach, J.P.; Delp, E.J. Printer Identification based on Graylevel Co-occurrence features for security and forensic applications. In Proceedings of the SPIE 5681, Security, Steganography, and Watermarking of Multimedia Contents VII, San Jose, CA, USA, 21 March 2005; Volume 5681, pp. 430–440. [Google Scholar] [CrossRef]
- Kanai, Y.; Ohta, Y.; Saitoh, A. Document Security System. U.S. Patent 0,271,839, 29 October 2009. [Google Scholar]
- Vainstein, K. Document Security System That Permits External Users to Gain Access to Secured Files. U.S. Patent 8,176,334, 8 May 2012. [Google Scholar]
- Hasegawa, R. Magnetic wire fabrication and application. J. Magn. Magn. Mater. 2002, 249, 346–350. [Google Scholar] [CrossRef]
- Schmitz, C.; Burchard, T. Safety Document. U.S. Patent 6,491,324, 10 December 2002. [Google Scholar]
- Herrojo, C.; Contreras, J.M.; Paredes, F. Near-Field Chipless-RFID System with Erasable/Programmable 40-bit Tags Inkjet Printed on Paper Substrates. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 272–274. [Google Scholar] [CrossRef]
- Singh, J.; Brar, N.; Fong, C. The State of RFID Applications in Libraries. Inf. Technol. Libr. 2006, 25, 24–32. [Google Scholar] [CrossRef]
- Barros, V.F.; Segundo, F.C.G.S.; Campos, A.L.P.S.; Silva, S.G.; Neto, A.G. A Novel Simple Convoluted Geometry to Design Frequency Selective Surfaces for Applications at ISM and UNII Bands. J. Microw. Optoelectron. Electromagn. Appl. 2017, 16, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Qu, M.; Rao, M.; Li, S.; Deng, L. Tunable antenna radome based on graphene frequency selective surface. Am. Inst. Phys. (AIP) Adv. 2017, 7, 095307. [Google Scholar] [CrossRef]
- Bakir, M.; Delihacioglu, K.; Karaaslan, M. U-shaped frequency selective surfaces for single-and dual-band applications together with absorber and sensor configurations. IET Microw. Antennas Propag. 2016, 10, 293–300. [Google Scholar] [CrossRef]
- Dewani, A.A.; O’Keefe, S.G.; Thiel, D.V.; Galehdar, A. Optically transparent frequency selective surfaces on flexible thin plastic substrates. Am. Inst. Phys. (AIP) Adv. 2015, 5, 027107. [Google Scholar] [CrossRef] [Green Version]
- Chaharmir, M.R.; Ethier, J.; Lee, D.; Shaker, J. Design of Dual-Band Frequency Selective Surfaces to Block Wi-Fi Using Printable Electronics Technology. In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, Canada, 10–13 July 2016. [Google Scholar]
- Dewani, A.A.; O’Keefe, S.G.; Thiel, D.V.; Galehdar, A. Window RF Shielding Film Using Printed FSS. IEEE Trans. Antennas Propag. 2018, 66, 790–796. [Google Scholar] [CrossRef]
- Martin, A.N.; Barros, F.D.; Tourtollet, G.E.P.; Auger, P.L.; Pistono, E.; Vuong, T.P. Metapaper: A Frequency Selective Surface Wallpaper for the attenuation of Wi-Fi signals. In Proceedings of the 45th European Microwave Conference, Paris, France, 7–10 September 2015; pp. 466–469. [Google Scholar] [CrossRef]
- Sivasamy, R.; Murugasamy, L.; Kanagasabai, M.; Sundarsingh, E.F.; Alsath, M.G.N. A Low-Profile Paper Substrate-Based Dual-Band FSS for GSM Shielding. IEEE Trans. Electromagn. Compat. 2016, 58, 611–614. [Google Scholar] [CrossRef]
- Cho, S.S.; Hong, I.P. Design of Paper-Based Reconfigurable Frequency Selective Surface for Spectrum Control of Indoor Environments. J. Korea Inst. Commun. Sci. 2016, 41, 775–782. [Google Scholar] [CrossRef]
- Clemens, T.G. Antenna Structure for an Electronic Article Surveillance System. U.S. Patent 5,103,235, 7 April 1992. [Google Scholar]
- Coast, F.; Monorchio, A.; Manara, G. An Overview of Equivalent Circuit Modeling Techniques of Frequency Selective Surfaces and Metasurfaces. Appl. Comput. Electromagn. Soc. (ACES) J. 2014, 29, 960–976. [Google Scholar]
Folding | Number of Unit Cell | ||
---|---|---|---|
Count | Size (mm) | Loop | Patch |
0 | A4 (297 × 210) | 25 × 17 | 23 × 16 |
1 | 1/2 (210 × 148) | 17 × 12 | 16 × 11 |
2 | 1/4 (148 × 105) | 12 × 8 | 11 × 8 |
3 | 1/8 (105 × 74) | 8 × 6 | 8 × 5 |
4 | 1/16 (74 × 52) | 6 × 4 | 5 × 4 |
5 | 1/32 (52 × 37) | 4 × 3 | 4 × 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Kim, M.-S.; Kim, J.-K.; Hong, I.-P. Design of Security Paper with Selective Frequency Reflection Characteristics. Sensors 2018, 18, 2263. https://doi.org/10.3390/s18072263
Lee S-H, Kim M-S, Kim J-K, Hong I-P. Design of Security Paper with Selective Frequency Reflection Characteristics. Sensors. 2018; 18(7):2263. https://doi.org/10.3390/s18072263
Chicago/Turabian StyleLee, Sang-Hwa, Min-Sik Kim, Jong-Kyu Kim, and Ic-Pyo Hong. 2018. "Design of Security Paper with Selective Frequency Reflection Characteristics" Sensors 18, no. 7: 2263. https://doi.org/10.3390/s18072263
APA StyleLee, S. -H., Kim, M. -S., Kim, J. -K., & Hong, I. -P. (2018). Design of Security Paper with Selective Frequency Reflection Characteristics. Sensors, 18(7), 2263. https://doi.org/10.3390/s18072263