Loosening Monitoring of the Threaded Pipe Connection Using Time Reversal Technique and Piezoceramic Transducers
Abstract
:1. Introduction
- (1)
- The combined effect of the contact area change of the screwed interface and the relative distance variation between the PZT actuator and sensor to the results.
- (2)
- The repeatability of the developed TR-based approach and the consistency of the results.
- (3)
- The anti-disturbance performance of the developed approach.
2. Detection Principles
2.1. Threaded Pipe Connection
2.2. Stress Wave Propagation through Threaded Pipe Connection
2.3. PZT-Based Time Reversal Technique
3. Experimental Setup and Procedures
3.1. Specimen Preparation and Sensor Location
3.2. The Excitation Signal
3.3. Instrumental Setup and Test Procedure
4. Experimental Results and Analysis
4.1. The Relationship between the Stress Wave Transmission and Loosening Severities of the Connection
4.2. Repeatability Verification
4.3. Anti-Disturbance Ability
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Wittenberghe, J. Experimental Analysis and Modelling of the Fatigue Behaviour of Threaded Pipe Connections. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2011. [Google Scholar]
- Van Wittenberghe, J.; De Pauw, J.; De Baets, P.; De Waele, W.; Ost, W.; De Roeck, G.; Bui, T. Fatigue investigation of threaded pipe connections. Sustain. Constr. Des. 2010, 1, 182. [Google Scholar]
- Galle, T.; De Waele, W.; De Baets, P.; Van Wittenberghe, J. Influence of design features on the structural integrity of threaded pipe connections. In Proceedings of the Sustainable Construction and Design 2011 (SCAD), Ghent, Belgium, 16–17 February 2011; pp. 237–245. [Google Scholar]
- Andrieux, S.; Leger, A. Multiple scaling method for the calculation of threaded assemblies. Comput. Method Appl. Mech. Eng. 1993, 102, 293–317. [Google Scholar] [CrossRef]
- Bouchoucha, F.; Akrout, M.; Fakhfakh, T.; Ichchou, M.N.; Haddar, M. Damage Detection in Cylindrical Pipe through Diffusion Matrix in Wave Finite Element Method. Adv. Struct. Eng. 2012, 15, 435–446. [Google Scholar] [CrossRef]
- Niklès, M.; Vogel, B.H.; Briffod, F.; Grosswig, S.; Sauser, F.; Luebbecke, S.; Bals, A.; Pfeiffer, T. Leakage detection using fiber optics distributed temperature monitoring. In Proceedings of the Smart Structures and Materials 2004: Smart Sensor Technology and Measurement Systems, San Diego, CA, USA, 15–17 March 2004; pp. 18–26. [Google Scholar]
- Li, W.; Zhu, Y. Analysis on Leakage Detection and Location Techniques for Long Transmission Pipeline. Nat. Gas Ind. 2005, 25, 105. [Google Scholar]
- Chen, B.; Wan, J.-W.; Wu, Y.-F.; Qin, N. A pipeline leakage diagnosis for fusing neural network and evidence theory. J. Beijing Univ. Post Telecommun. 2009, 32, 5–9. [Google Scholar]
- Sun, L.; Li, Y.; Qu, Z.; Jin, S.; Zhou, Y. Study on acoustic emission detection for pipeline leakage based on EMD signal analysis method. J. Vib. Shock 2007, 26, 161–164. [Google Scholar]
- Zhou, Y.; Jin, Y.; Zhang, S.; Sun, L. Distributed optical fiber sensing technology for pipeline leakage detection and location. Acta Pet. Sin. 2006, 2, 027. [Google Scholar]
- Liang, W.; Zhang, L.; Xu, Q.; Yan, C. Gas pipeline leakage detection based on acoustic technology. Eng. Fail. Anal. 2013, 31, 1–7. [Google Scholar] [CrossRef]
- Qu, Z.; Feng, H.; Zeng, Z.; Zhuge, J.; Jin, S. A SVM-based pipeline leakage detection and pre-warning system. Measurement 2010, 43, 513–519. [Google Scholar] [CrossRef]
- He, F.; Cui, X.; Zhang, Y.; Huang, Z. Non-contact measurement of oil tube thread and the application. In Proceedings of the Optical Technology and Image Processing for Fluids and Solids Diagnostics 2003, Beijing, China, 3–6 September 2002; pp. 661–666. [Google Scholar]
- Chen, S.-J.; An, Q.; Zhang, Y.; Gao, L.-X.; Li, Q. Loading analysis on the thread teeth in cylindrical pipe thread connection. J. Press. Vessel Technol. 2010, 132, 031202. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.-L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 033001. [Google Scholar] [CrossRef]
- Liang, Y.; Li, D.; Parvasi, S.M.; Kong, Q.; Song, G. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique. Smart Mater. Struct. 2016, 25, 095003. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Huo, L.; Song, G. Crack detection and leakage monitoring on reinforced concrete pipe. Smart Mater. Struct. 2015, 24, 115020. [Google Scholar] [CrossRef]
- Song, G.; Mo, Y.; Otero, K.; Gu, H. Health monitoring and rehabilitation of a concrete structure using intelligent materials. Smart Mater. Struct. 2006, 15, 309–314. [Google Scholar] [CrossRef]
- Kong, Q.; Chen, H.; Mo, Y.-L.; Song, G. Real-time monitoring of water content in sandy soil using shear mode piezoceramic transducers and active sensing—A feasibility study. Sensors 2017, 17, 2395. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, D.; Kong, Q.; Song, G. Load Monitoring of the Pin-Connected Structure Using Time Reversal Technique and Piezoceramic Transducers—A Feasibility Study. IEEE Sens. J. 2016, 16, 7958–7966. [Google Scholar] [CrossRef]
- Li, D.; Liang, Y.; Feng, Q.; Song, G. Load monitoring of the pin-connected structure based on wavelet packet analysis using piezoceramic transducers. Measurement 2018, 122, 638–647. [Google Scholar] [CrossRef]
- Liang, Y.; Li, D.; Parvasi, S.M.; Song, G. Load monitoring of pin-connected structures using piezoelectric impedance measurement. Smart Mater. Struct. 2016, 25, 105011. [Google Scholar] [CrossRef]
- Wang, T.; Song, G.; Liu, S.; Li, Y.; Xiao, H. Review of bolted connection monitoring. Int. J. Distrib. Sens. Netw. 2013, 9. [Google Scholar] [CrossRef]
- Kong, Q.; Zhu, J.; Ho, M.; Song, G. Tapping and Listening: A New Approach to Bolt Looseness Monitoring. Smart Mater. Struct. 2018, 27, 07LT02. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Huo, L.; Song, G. Health monitoring of cuplok scaffold joint connection using piezoceramic transducers and time reversal method. Smart Mater. Struct. 2016, 25, 035010. [Google Scholar] [CrossRef]
- Hong, X.; Wang, H.; Wang, T.; Liu, G.; Li, Y.; Song, G. Dynamic cooperative identification based on synergetics for pipe structural health monitoring with piezoceramic transducers. Smart Mater. Struct. 2013, 22, 045003. [Google Scholar] [CrossRef]
- Edelmann, G.F.; Song, H.; Kim, S.; Hodgkiss, W.; Kuperman, W.; Akal, T. Underwater acoustic communications using time reversal. IEEE J. Ocean. Eng. 2005, 30, 852–864. [Google Scholar] [CrossRef]
- Fink, M.; Montaldo, G.; Tanter, M. Time-reversal acoustics in biomedical engineering. Annu. Rev. Biomed. Eng. 2003, 5, 465–497. [Google Scholar] [CrossRef] [PubMed]
- Prada, C.; Fink, M. Separation of interfering acoustic scattered signals using the invariants of the time-reversal operator. Application to Lamb waves characterization. J. Acoust. Soc. Am. 1998, 104, 801–807. [Google Scholar] [CrossRef]
- Ing, R.; Fink, M. Self-focusing and time recompression of Lamb waves using a time reversal mirror. Ultrasonics 1998, 36, 179–186. [Google Scholar] [CrossRef]
- Park, H.W.; Kim, S.B.; Sohn, H. Understanding a time reversal process in Lamb wave propagation. Wave Motion 2009, 46, 451–467. [Google Scholar] [CrossRef]
- Hsu, W.-C. Focused torsional guided wave for defects inspection on elbow using time reversal method. Master’s Thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, 2015. [Google Scholar]
- Hong, X.; Song, G.; Ruan, J.; Zhang, Z.; Wu, S.; Liu, G. Active monitoring of pipeline tapered thread connection based on time reversal using piezoceramic transducers. Smart Struct. Syst. 2016, 18, 643–662. [Google Scholar] [CrossRef]
- Van Wittenberghe, J.; De Baets, P.; De Waele, W.; Galle, T.; Bui, T.T.; De Roeck, G. Design characteristics that improve the fatigue life of threaded pipe connections. In Proceedings of the Sustainable Construction and Design 2011 (SCAD), Ghent, Belgium, 16–17 February 2011; pp. 334–341. [Google Scholar]
- TenarisHydril, Premium Connections. Available online: http://www.tenaris.com/en/Products/PremiumConnections.aspx (accessed on 16 June 2018).
- Antonyuk, S.; Heinrich, S.; Tomas, J.; Deen, N.G.; van Buijtenen, M.S.; Kuipers, J. Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter 2010, 12, 15–47. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.F. Wave propagation in structures. In Wave Propagation in Structures; Springer: New York, NY, USA, 1989; pp. 126–156. [Google Scholar]
- Siu, S.; Ji, Q.; Wu, W.; Song, G.; Ding, Z. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel. Biocontrol Sci. Technol. 2014, 23, 125030. [Google Scholar] [CrossRef]
- Siu, S.; Qing, J.; Wang, K.; Song, G.; Ding, Z. Stress wave communication in concrete: II. Evaluation of low voltage concrete stress wave communications utilizing spectrally efficient modulation schemes with PZT transducers. Smart Mater. Struct. 2014, 23, 125031. [Google Scholar] [CrossRef]
- Ji, Q.; Ho, M.; Zheng, R.; Ding, Z.; Song, G. An exploratory study of stress wave communication in concrete structures. Smart Struct. Syst. 2015, 15, 135–150. [Google Scholar] [CrossRef]
- Ing, R.K.; Fink, M. Time recompression of dispersive Lamb waves using a time reversal mirror-application to flaw detection in thin plates. In Proceedings of the Ultrasonics Symposium, San Antonio, TX, USA, 3–6 November 1996; Volume 1, pp. 659–663. [Google Scholar]
- Ing, R.K.; Fink, M. Time-reversed Lamb waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Fink, M.; Cassereau, D.; Derode, A.; Prada, C.; Roux, P.; Tanter, M.; Thomas, J.-L.; Wu, F. Time-reversed acoustics. Rep. Prog. Phys. 2000, 63, 1933. [Google Scholar] [CrossRef]
- Park, H.W.; Sohn, H.; Law, K.H.; Farrar, C.R. Time reversal active sensing for health monitoring of a composite plate. J. Sound Vib. 2007, 302, 50–66. [Google Scholar] [CrossRef]
- Gangadharan, R.; Murthy, C.; Gopalakrishnan, S.; Bhat, M. Time reversal technique for health monitoring of metallic structure using Lamb waves. Ultrasonics 2009, 49, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, D.; Yang, K. Delamination detection base on wavelet correlation damage index of time reversal guided wave. Aust. J. Mech. Eng. 2017, 1–6. [Google Scholar] [CrossRef]
- Ji, Q.; Kong, Q.; Song, G. Study on energy focusing synthesis on pipe using time reversal technique. In Proceedings of the 11th International Conference on Networking, Sensing and Control (ICNSC), Miami, FL, USA, 7–9 April 2014; pp. 625–630. [Google Scholar]
- Fink, M. Time-reversed acoustics. Sci. Am. 1999, 281, 91–97. [Google Scholar] [CrossRef]
- Watkins, R.; Jha, R. A modified time reversal method for Lamb wave based diagnostics of composite structures. Mech. Syst. Signal Process. 2012, 31, 345–354. [Google Scholar] [CrossRef]
- Anastasi, R.F. Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves; Army Research Lab Hampton VA Vehicle Technology Directorate: Hampton, VA, USA, 2011. [Google Scholar]
Components | Parameters | Values | Unit |
---|---|---|---|
Steel specimen | Diameter (pipe part) | 48 (42) 1 | mm |
Diameter (coupling part) | 60 (45) 1 | mm | |
Density | 7900 | kg/m3 | |
Young’s modulus | 206 | Gpa | |
Poisson’s ratio | 0.3 | -- | |
Static friction coefficient (steel-steel) | 0.15 | -- | |
PZT-5H | Dimension | mm | |
Density | 7800 | kg/m3 | |
Young’s modulus | 46 | Gpa | |
Poisson’s ratio | 0.3 | -- | |
Structural damping | 3 × 10−9 | -- | |
Dielectric loss factor | 0.02 | -- | |
Mechanical loss factor | 0.001 | -- | |
Piezoelectric strain coefficients d31, d32/d33/d24, d15 | −2.10/5.00/5.80 | 10−10 m/V or 10−10 C/N | |
Electric permittivity , / | 1.75/2.12 | 10−8 F/m |
Parameters | Value | Unit |
---|---|---|
Amplitude | 10 | V |
Center frequency | 200 | kHz |
Normalized bandwidth | 0.02 | -- |
Attenuation | 2 | dB |
Delay | 0.05 | s |
Rotation Angle | Min (V) | Max (V) | μ (V) | COV/σ/μ |
---|---|---|---|---|
0° | 0.1719 | 0.1937 | 0.1847 | 0.0502 |
30° | 0.1215 | 0.1369 | 0.1311 | 0.0386 |
60° | 0.0980 | 0.1108 | 0.1048 | 0.0440 |
90° | 0.0785 | 0.0901 | 0.0859 | 0.0459 |
120° | 0.0668 | 0.0753 | 0.0716 | 0.0438 |
150° | 0.0439 | 0.0553 | 0.0500 | 0.0785 |
180° | 0.0115 | 0.0308 | 0.0197 | 0.3298 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Feng, Q.; Li, D. Loosening Monitoring of the Threaded Pipe Connection Using Time Reversal Technique and Piezoceramic Transducers. Sensors 2018, 18, 2280. https://doi.org/10.3390/s18072280
Liang Y, Feng Q, Li D. Loosening Monitoring of the Threaded Pipe Connection Using Time Reversal Technique and Piezoceramic Transducers. Sensors. 2018; 18(7):2280. https://doi.org/10.3390/s18072280
Chicago/Turabian StyleLiang, Yabin, Qian Feng, and Dongsheng Li. 2018. "Loosening Monitoring of the Threaded Pipe Connection Using Time Reversal Technique and Piezoceramic Transducers" Sensors 18, no. 7: 2280. https://doi.org/10.3390/s18072280
APA StyleLiang, Y., Feng, Q., & Li, D. (2018). Loosening Monitoring of the Threaded Pipe Connection Using Time Reversal Technique and Piezoceramic Transducers. Sensors, 18(7), 2280. https://doi.org/10.3390/s18072280