On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis
Abstract
:1. Introduction
Voltage measurement of limb leads, although measured in a closed circuit, does not form a triangle for the majority of the duration of a cardiac cycle; hence, a centre and centroid that constitute the WCT cannot be identified, as per Wilson’s hypothesis.
2. Materials and Methods
2.1. Methodology Background: Principles of Voltage/Current Measurement in Electrocardiography
2.2. Study Hypothesis: On the Equilateral Triangle Hypothesis
- High signal-to-noise ratio: no muscles/movements artifacts
- Avoid pacemaker where possible
- Avoid multiple p-waves in case of atrial flutter
- Avoid ectopic where possible.
2.3. A Brief Summary of the Hardware Used
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Malmivuo, J.; Plonsey, R. Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Gargiulo, G.D.; Bifulco, P.; Cesarelli, M.; McEwan, A.L.; Moenizadeh, H.; O’Loughlin, A.; Shugman, I.M.; Tapson, J.C.; Thiagalingam, A. On the “Zero of potential of the electric field produced by the heart beat”. A machine capable of estimating this underlying persistent error in electrocardiography. Machines 2016, 4, 18. [Google Scholar] [CrossRef]
- Gargiulo, G.D.; Varaki, E.S.; Hamilton, T.J.; Bifulco, P.; Cesarelli, M.; Romano, M. A 9-independent-leads ECG system from 10 electrodes: A practice preserving WCT-less true unipolar ECG system. In Proceedings of the Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015. [Google Scholar]
- Webster, J.G. (Ed.) Medical Instrumentation Application and Design; John Willey: Hoboken, NJ, USA, 2009. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, G.; Bifulco, P.; Cesarelli, M.; McEwan, A.; O’Loughlin, A.J.; Tapson, J.C.; Thiagalingam, A. The Wilson’s Central Terminal (WCT): A Systematic error in ECG recordings. Heart Lung Circ. 2016, 25, S263. [Google Scholar] [CrossRef]
- Bousseljot, R.; Kreiseler, D.; Schnabel, A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das internet. Biomed. Tech. 1995, 40, S319. [Google Scholar] [CrossRef]
- Frank, E. General theory of heart-vector projection. Circ. Res. 1954, 2, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.; Kay, C.F. The construction of mean spatial vectors from null contours. Circulation 1954, 9, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Dower, G.E.; Osborne, J.A.; Moore, A. Measurement of the error in Wilson’s central terminal: An accurate definition of unipolar leads. Br. Heart J. 1959, 21, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Shimizu, Y.; Nishiyama, G.; Mashima, S.; Okamoto, Y. The absolute voltage and the lead vector of Wilson’s central terminal. Jpn. Heart J. 1996, 37, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Bacharova, L.; Selvester, R.H.; Engblom, H.; Wganer, H.S. Where is the central terminal located? In search of understanding the use of the Wilson central terminal for production of 9 of the standard 12 electrocardiogram leads. J. Electrocardiol. 2005, 38, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Madias, J.E. On recording the unipolar ECG limb leads via the Wilson’s vs. the Goldberger’s terminals: AVR, aVL, and aVF Revisited. Indian Pacing Electrophysiol. J. 2008, 8, 292–297. [Google Scholar] [PubMed]
- Miyamoto, N.; Shimizu, Y.; Nishiyama, G.; Mashima, S.; Okamoto, Y. On the potential of the Wilson central terminal with respect to an ideal reference for unipolar electrocardiography. J. Electrocardiol. 1995, 28, 336–337. [Google Scholar] [CrossRef]
- Bayley, R.H.; Schmidt, A.E. The problem of adjusting the Wilson central terminal to a zero of potential in the living human subject. Circ. Res. 1955, 3, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.C. The zero of potential: A persistent error. Am. Heart J. 1955, 49, 581–586. [Google Scholar] [CrossRef]
- Gargiulo, G.D. True unipolar ECG machine for Wilson central terminal measurements. BioMed Res. Int. 2015, 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, G.D.; Tapson, J.; van Schaik, A.; McEwan, A.; Thiagalingam, A. Unipolar ECG circuits: Towards more precise cardiac event identification. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing, China, 19–23 May 2013; pp. 662–665. [Google Scholar]
- Gargiulo, G.D.; McEwan, A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Tapson, J.; Thiagalingam, A.; van Schaik, A. Towards true unipolar bio-potential recording: A preliminary result for ECG. Physiol. Meas. 2013, 34. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, G.; Thiagalingam, A.; McEwan, A.; Cesarelli, M.; Bifulco, P.; Tapson, J.; van Schaik, A. True unipolar ECG leads recording (without the use of WCT). Heart Lung Circ. 2013, 22, s102. [Google Scholar] [CrossRef]
- Gargiulo, G.D.; McEwan, A.L.; Bifulco, P.; Cesarelli, M.; Jin, C.; Tapson, J.; Thiagalingam, A.; van Schaik, A. Towards true unipolar ECG recording without the Wilson central terminal (Preliminary results). Physiol. Meas. 2013, 34, 991–1012. [Google Scholar] [CrossRef] [PubMed]
- Wilson, F.N.; Johnston, F.D.; Rosenbaum, F.F.; Barker, P.S. On Einthoven’s triangle, the theory of unipolar electrocardiographic leads and the interpretation of the precordial electrocardiogram. Am. Heart J. 1946, 32, 277–310. [Google Scholar] [CrossRef]
- De Medina MD, E.O.R.; Peteers MD, H.A.P.; Wittkampf, F.H.M. F.N. Wilson: The unipolar electrocardiogram. ACC Curr. J. Rev. 2000, 9, 4. [Google Scholar]
- Burger, H.C.; van Milaan, J.B. Heart-vector and leads. Br. Heart J. 1946, 8, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.C.; van Milaan, J.B. Heart-vector and leads Part II. Br. Heart J. 1947, 9, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.C.; van Milaan, J.B. Heart-vector and leads Part III Geometrical representation. Br. Heart J. 1948, 10, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Bayley, R.H.; Kinard, C.L. The zero of potential of the electric field produced by the heart beat: The problem with reference to living human subject. Circ. Res. 1954, 2, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Bayley, R.H.; Reynolds, E.W.; Kinard, C.L.; Head, J.F. The zero of potential of the electric field produced by the heart beat: The problem with reference to homogeneous volume conductors. Circ. Res. 1954, 2, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Tyner, F.S.; Knott, J.R.; Mayer, W.B. Fundamentals of EEG Technology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1983. [Google Scholar]
- Horowitz, P.; Hill, W. The Art of Electronics; PediaPress: Cambridge, UK, 2002. [Google Scholar]
- Byes, W. (Ed.) Instrumentation Reference Book; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Winter, B.B.; Webster, J.G. Reduction of interference due to common mode voltage in biopotential amplifiers. IEEE Trans. Biomed. Eng. 1983, BME-30, 58–62. [Google Scholar] [CrossRef]
- Hwang, I.-D.; Webster, J.G. Direct interference canceling for two-electrode biopotential amplifier. IEEE Trans. Biomed. Eng. 2008, 55, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, G.; Calvo, R.; Jin, C. Giga-ohm high-impedance FET input amplifiers for dry electrode biosensor circuits and systems. In Integrated Microsystems Electronics; Photonics, and Biotechnology; Iniewski, K., Ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Gargiulo, G.D.; Bifulco, P.; Cesarelli, M.; Fratini, A.; Romano, M. Problems in assessment of novel biopotential front-end with dry electrode: A brief review. Machines 2014, 2, 87–98. [Google Scholar] [CrossRef]
- Lilly, L.S.; Braunwald, E. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine; Elsevier: New York, NY, USA, 2012; p. 2048. [Google Scholar]
Angle | Opposed to Lead I [deg] | Opposed to Lead II [deg] | Opposed to Lead III [deg] | |||
---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | |
One beat | 59 | 31 | 70 | 36 | 51 | 30 |
One QRS | 64 | 40 | 66 | 41 | 50 | 37 |
Patient Record Number | Lead II Amplitude [mV] | Lead I Amplitude as % of Lead II | Lead III Amplitude as % of Lead II | WCT Amplitude as % of Lead II | Age [years] | Gender |
---|---|---|---|---|---|---|
1 | 1.02 | 118 | 152 | 117 | 70 | F |
2 | 0.48 | 333 | 283 | 95 | 53 | M |
3 | 1.55 | 87 | 82 | 77 | 80 | M |
4 | 0.52 | 240 | 285 | 174 | 85 | M |
5 | 1.19 | 126 | 43 | 45 | 69 | F |
6 | 0.83 | 105 | 113 | 52 | 78 | M |
7 | 0.46 | 199 | 235 | 120 | 73 | M |
8 | 0.94 | 160 | 121 | 57 | 55 | F |
9 | 0.20 | 202 | 176 | 114 | 52 | F |
10 | 0.88 | 158 | 170 | 60 | 70 | F |
11 | 1.12 | 57 | 115 | 82 | 79 | M |
12 | 0.58 | 217 | 125 | 56 | 51 | F |
13 | 0.30 | 123 | 88 | 45 | 52 | M |
14 | 1.28 | 71 | 46 | 59 | 88 | F |
15 | 0.77 | 176 | 100 | 30 | 68 | F |
16 | 0.45 | 222 | 153 | 101 | 49 | M |
17 | 0.78 | 180 | 122 | 60 | 67 | M |
18 | 0.70 | 246 | 170 | 206 | 60 | F |
19 | 0.99 | 105 | 21 | 24 | 54 | F |
20 | 0.86 | 104 | 32 | 29 | 58 | M |
21 | 1.13 | 78 | 134 | 63 | 56 | M |
22 | 0.42 | 136 | 111 | 53 | 70 | M |
23 | 1.35 | 107 | 78 | 42 | 55 | F |
24 | 1.18 | 134 | 97 | 38 | 76 | F |
25 | 0.65 | 81 | 46 | 37 | 74 | F |
26 | 0.60 | 331 | 385 | 151 | 53 | M |
27 | 0.87 | 126 | 67 | 26 | 48 | M |
28 | 0.86 | 177 | 168 | 74 | 57 | M |
29 | 0.67 | 300 | 267 | 88 | 44 | M |
30 | 1.81 | 41 | 90 | 56 | 59 | M |
31 | 0.62 | 144 | 67 | 21 | 84 | F |
32 | 0.92 | 76 | 133 | 70 | 70 | M |
33 | 0.66 | 287 | 256 | 79 | 58 | M |
34 | 0.92 | 141 | 168 | 91 | 51 | M |
35 | 0.55 | 98 | 193 | 110 | 66 | F |
36 | 0.41 | 108 | 127 | 117 | 96 | M |
37 | 0.57 | 170 | 108 | 82 | 53 | M |
38 | 0.55 | 130 | 159 | 80 | 59 | M |
39 | 1.06 | 55 | 56 | 50 | 61 | M |
40 | 0.38 | 136 | 62 | 64 | 68 | F |
41 | 0.70 | 193 | 106 | 58 | 52 | F |
42 | 0.92 | 115 | 88 | 49 | 61 | M |
43 | 0.30 | 115 | 126 | 144 | 70 | M |
44 | 1.29 | 65 | 55 | 52 | 53 | F |
45 | 0.32 | 194 | 226 | 173 | 69 | M |
46 | 0.68 | 299 | 221 | 73 | 47 | M |
47 | 0.92 | 62 | 150 | 107 | 82 | F |
48 | 0.61 | 107 | 66 | 33 | 71 | F |
49 | 1.60 | 24 | 106 | 60 | 73 | M |
50 | 0.67 | 137 | 120 | 147 | 77 | M |
Means | 0.80 | 148 | 133 | 78 | 64.48 | |
STDs | 0.36 | 75 | 75 | 42 | 12.19 | |
M = 60% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargiulo, G.D.; Bifulco, P.; Cesarelli, M.; McEwan, A.L.; Moeinzadeh, H.; O’Loughlin, A.; Shugman, I.M.; Tapson, J.C.; Thiagalingam, A. On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis. Sensors 2018, 18, 2353. https://doi.org/10.3390/s18072353
Gargiulo GD, Bifulco P, Cesarelli M, McEwan AL, Moeinzadeh H, O’Loughlin A, Shugman IM, Tapson JC, Thiagalingam A. On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis. Sensors. 2018; 18(7):2353. https://doi.org/10.3390/s18072353
Chicago/Turabian StyleGargiulo, Gaetano D., Paolo Bifulco, Mario Cesarelli, Alistair L. McEwan, Hossein Moeinzadeh, Aiden O’Loughlin, Ibrahim M. Shugman, Jonathan C. Tapson, and Aravinda Thiagalingam. 2018. "On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis" Sensors 18, no. 7: 2353. https://doi.org/10.3390/s18072353
APA StyleGargiulo, G. D., Bifulco, P., Cesarelli, M., McEwan, A. L., Moeinzadeh, H., O’Loughlin, A., Shugman, I. M., Tapson, J. C., & Thiagalingam, A. (2018). On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis. Sensors, 18(7), 2353. https://doi.org/10.3390/s18072353