The Influence of Radial Undersampling Schemes on Compressed Sensing in Cardiac DTI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Schemes
2.2. CS Reconstruction
Algorithm 1. The solving process of the proposed method. |
INPUT: : the maximum number of iterations; : the tolerance parameter. OUTPUT: : the reconstructed diffusion weighted (DW) images. |
REPEAT: . |
2.3. Experimental Data
2.4. Evaluation Criteria
3. Results and Discussion
3.1. Visual and Quantitative Comparison
3.2. Effects of Sampling Rates
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wright, K.L.; Hamilton, J.I.; Griswold, M.A.; Gulani, V.; Seiberlich, N. Non-Cartesian Parallel Imaging Reconstruction. J. Magn. Reson. Imaging 2014, 40, 1022–1040. [Google Scholar] [CrossRef] [PubMed]
- Lauterbur, P.C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 1973, 242, 190–191. [Google Scholar] [CrossRef]
- Lustig, M. Sparse MRI; Stanford University: Stanford, CA, USA, 2008. [Google Scholar]
- Block, K.T.; Uecker, M.; Frahm, J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Reson. Med. 2007, 57, 1086–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkelmann, S.; Schaeffter, T.; Koehler, T.; Eggers, H.; Doessel, O. An optimal radial profile order based on the golden ratio for time-resolved MRI. IEEE Trans. Med. Imaging 2007, 26, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Haji-Valizadeh, H.; Rahsepar, A.A.; Collins, J.D.; Bassett, E.; Isakova, T.; Block, T.; Adluru, G.; DiBella, E.V.R.; Lee, D.C.; Carr, J.C.; et al. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T. Magn. Reson. Med. 2018, 79, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Grimm, R.; Block, K.T.; Chandarana, H.; Kim, S.; Xu, J.; Axel, L.; Sodickson, D.K.; Otazo, R. Golden-Angle Radial Sparse Parallel MRI: Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling for Fast and Flexible Dynamic Volumetric MRI. Magn. Reson. Med. 2014, 72, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Han, F.; Yan, L.; Wang, D.J.J.; Hu, P. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI. Magn. Reson. Med. 2017, 78, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.; Ramsay, E.A.; Cheung, E.Y.; Plewes, D.B. The influence of radial undersampling schemes on compressed sensing reconstruction in breast MRI. Magn. Reson. Med. 2012, 67, 363–377. [Google Scholar] [CrossRef] [PubMed]
- El-Metwally, S.M.; Abd-Elmoniem, K.Z.; Youssef, A.M.; Kadah, Y.M. Rapid cardiac MRI using random radial trajectories. J. Eng. Appl. Sci. 2008, 55, 441–456. [Google Scholar]
- Block, K.T. Advanced Methods for Radial Data Sampling in Magnetic Resonance Imaging. Ph.D. Thesis, Niedersächsische Staats-und Universitätsbibliothek Göttingen, Göttingen, Germany, 2008. [Google Scholar]
- Peters, D.C.; Korosec, F.R.; Grist, T.M.; Block, W.F.; Holden, J.E.; Vigen, K.K.; Mistretta, C.A. Undersampled projection reconstruction applied to MR angiography. Magn. Reson. Med. 2000, 43, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Glover, G.H.; Pauly, J.M. Projection reconstruction techniques for reduction of motion effects in MRI. Magn. Reson. Med. 1992, 28, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.I.; Meyer, C.H.; Nishimura, D.G.; Macovski, A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 1991, 10, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.W.; Guo, H.; Song, A.W. An improved gridding method for spiral MRI using nonuniform fast Fourier transform. J. Magn. Reson. 2003, 162, 250–258. [Google Scholar] [CrossRef]
- Fessler, J.A. On NUFFT-based gridding for non-Cartesian MRI. J. Magn. Reson. 2007, 188, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Fessler, J.A.; Sutton, B.P. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 2003, 51, 560–574. [Google Scholar] [CrossRef]
- Yang, Z.; Jacob, M. Mean square optimal NUFFT approximation for efficient non-Cartesian MRI reconstruction. J. Magn. Reson. 2014, 242, 126–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Lingala, S.G.; DiBella, E.; Adluru, G.; McGann, C.; Jacob, M. Accelerating free breathing myocardial perfusion MRI using multi coil radial k-t SLR. Phys. Med. Boil. 2013, 58, 7309–7327. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.H. Accelerated Cardiovascular Magnetic Resonance Imaging Using Radial Acquisition with Compressed Sensing. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2012. [Google Scholar]
- Xie, J.; Lai, P.; Huang, F.; Li, Y.; Li, D. Cardiac magnetic resonance imaging using radial k-space sampling and self-calibrated partial parallel reconstruction. Magn. Reson. Imaging 2010, 28, 495–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adluru, G.; McGann, C.; Speier, P.; Kholmovski, E.G.; Shaaban, A.; DiBella, E.V.R. Acquisition and Reconstruction of Undersampled Radial Data for Myocardial Perfusion Magnetic Resonance Imaging. J. Magn. Reson. Imaging 2009, 29, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, A.; Troouard, T.P.; Gmitro, A.F.; Altbach, M.I. Randomly Perturbed Radial Trajectories for Compressed Sensing MRI. Proc. Intl. Soc. Mag. Reson. Med. 2008, 16, 3152. [Google Scholar]
- Huang, J.; Zhang, S.; Metaxas, D. Efficient MR image reconstruction for compressed MR imaging. Med. Image Anal. 2011, 15, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, Y.; Li, H.; Liu, W.; Magnin, I.E. Multiscale Modeling and Simulation of the Cardiac Fiber Architecture for DMRI. IEEE Trans. Biomed. Eng. 2012, 59, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Helm, P.A.; Younes, L.; Beg, M.F.; Ennis, D.B.; Leclercq, C.; Faris, O.P.; McVeigh, E.; Kass, D.; Miller, M.I.; Winslow, R.L. Evidence of structural remodeling in the dyssynchronous failing heart. Circ. Res. 2006, 98, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Helm, P.A.; Tseng, H.J.; Younes, L.; McVeigh, E.R.; Winslow, R.L. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Reson. Med. 2005, 54, 850–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helm, P.; Beg, M.F.; Miller, M.I.; Winslow, R.L. Measuring and Mapping Cardiac Fiber and Laminar Architecture Using Diffusion Tensor MR Imaging. Ann. N. Y. Acad. Sci. 2005, 1047, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, C.; Basser, P.J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 1996, 36, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.J.; Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 1996, 111, 209–219. [Google Scholar] [CrossRef]
- Jouk, P.-S.; Mourad, A.; Milisic, V.; Michalowicz, G.; Raoult, A.; Caillerie, D.; Usson, Y. Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardio-Thorac. Surg. 2007, 31, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Lagae, A.; Dutre, P. A comparison of methods for generating Poisson disk distributions. Comput. Graph. Forum 2008, 27, 114–129. [Google Scholar] [CrossRef] [Green Version]
Dataset | Sampling Scheme | FAmRMSE | MDmRMSE | EAmRMSE | AAmRMSE | Time(s)/Itr |
---|---|---|---|---|---|---|
Simulation dataset | UniformAngle | 0.0870 | 0.0606 | 2.8677 | 10.7861 | 0.3122 |
UniformAngleRP | 0.0644 | 0.0413 | 2.0844 | 8.4152 | 0.3218 | |
GoldenAngle | 0.0872 | 0.0607 | 2.9675 | 11.7130 | 0.3137 | |
GoldenAngleRP | 0.0646 | 0.0415 | 2.1862 | 8.3984 | 0.3224 | |
RandomizedAngle | 0.0921 | 0.0636 | 3.0442 | 10.8613 | 0.3104 | |
RandomizedAngleRP | 0.0672 | 0.0435 | 2.2745 | 9.6012 | 0.3327 | |
The first acquisition dataset | UniformAngle | 0.1262 | 0.4364 | 8.6682 | 30.2310 | 0.5957 |
UniformAngleRP | 0.1154 | 0.4085 | 8.2124 | 29.6616 | 0.6011 | |
GoldenAngle | 0.1265 | 0.4415 | 8.7086 | 30.3497 | 0.5953 | |
GoldenAngleRP | 0.1151 | 0.4071 | 8.1684 | 29.6183 | 0.6007 | |
RandomizedAngle | 0.1347 | 0.4928 | 9.2043 | 31.3209 | 0.5963 | |
RandomizedAngleRP | 0.1207 | 0.4529 | 8.5320 | 30.3409 | 0.6021 | |
The second acquisition dataset | UniformAngle | 0.0413 | 0.0447 | 2.5788 | 15.2440 | 0.0768 |
UniformAngleRP | 0.0349 | 0.0359 | 2.3112 | 14.7442 | 0.0788 | |
GoldenAngle | 0.0441 | 0.0462 | 2.7211 | 15.3245 | 0.0767 | |
GoldenAngleRP | 0.0382 | 0.0392 | 2.4450 | 14.8812 | 0.0790 | |
RandomizedAngle | 0.0499 | 0.0510 | 3.0379 | 16.2691 | 0.0766 | |
RandomizedAngleRP | 0.0431 | 0.0447 | 2.6901 | 15.6574 | 0.0790 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Song, W.; Wang, L.; Zhu, Y. The Influence of Radial Undersampling Schemes on Compressed Sensing in Cardiac DTI. Sensors 2018, 18, 2388. https://doi.org/10.3390/s18072388
Huang J, Song W, Wang L, Zhu Y. The Influence of Radial Undersampling Schemes on Compressed Sensing in Cardiac DTI. Sensors. 2018; 18(7):2388. https://doi.org/10.3390/s18072388
Chicago/Turabian StyleHuang, Jianping, Wenlong Song, Lihui Wang, and Yuemin Zhu. 2018. "The Influence of Radial Undersampling Schemes on Compressed Sensing in Cardiac DTI" Sensors 18, no. 7: 2388. https://doi.org/10.3390/s18072388
APA StyleHuang, J., Song, W., Wang, L., & Zhu, Y. (2018). The Influence of Radial Undersampling Schemes on Compressed Sensing in Cardiac DTI. Sensors, 18(7), 2388. https://doi.org/10.3390/s18072388