Smart Portable Devices Suitable for Cultural Heritage: A Review
Abstract
:1. Introduction
- -
- The first one, dedicated to a complete overview of the portable humidity sensors [42], temperature probes [43], pH devices [44] and gaseous/particulate matter sampler/collectors [45,46], which are necessary to perform the air quality control of the indoor/outdoor environment, where CH are located. Additionally, a paragraph is also dedicated to the new generation of the portable devices, suitable to work, directly in contact with the art work surfaces. A summary of the main challenges, research needs, limitation and drawbacks of the sensors designed for CH, are shown on Table 1.
- -
- The second section considers an engineered integration of movable sensors and portable actuators (i.e., nanomachineries) could represent the first proof-of-concept of a mobile Laboratory/Lab, suitable to carry out in situ diagnosis and in loco remediation/restoration of art work surfaces. It is necessary for the movable Lab to be interfaced with the most innovative ICT and IoT technological systems, to be completely autonomous in experiments and to process big data.
2. Section I: The Portable Humidity, Temperature, pH Devices and Pollutants Samplers
- -
- days of closure to public, indicating that the presence of visitors was the main contribution to the indoor particulate matter, especially when people opened the doors, or their presence determined the resuspension of dust, previously deposited on the floor:
- -
- or during the winter campaign (carried out, from March to May 2007).
3. Section II: Mobile Tools Integrated with ICT/IoT, for the Assembly of a Movable Laboratory
- (a)
- Wireless Sensor Network (WSN). The radio frequency communication is suitable for the monitoring of the Cultural Heritage environments, because is not limited by line-of-sight and the current technology allows implementation of low-power radio transceivers. ZigBee and Bluetooth are some standard protocols for short-range wireless communications. Especially, mobile phones and electronics devices adopt Bluetooth to send documents, files, images or documents for information of art work objects (especially before and after restoration/conservation treatments and consolidation procedures). The same authors [80] propose a WSN based on MICAz modules by Crossbow. They use MPR2400CA and MTS400 as transmission nodes, having different modules with several parameters, useful for the establishment of the conservation status of CHs such as: temperature, humidity, pressure, luminosity and two-axis acceleration (as reported in the first section of the review). This receptor node, based on MICAz and MIB510 boards; could allow to add new chemical sensors to detect additional parameters, as CO2 and other gaseous molecular pollutants and particulate solid matter pollutants.
- (b)
- Central System (CS). CS provides storage in a database, security and user interface to access to the environmental information, with capabilities of remote monitoring and storage in any place and any time. “Central System” consists of a web server, a database and a user interface. The server continuously receives data from the local environment to be processed and analyzed in real time. As the web interface, the same authors [80] have chosen Java. Java is a general-purpose, concurrent and multiplatform programming language. It accepts all the information from the environment using long-range wireless communication processes. These data are stored in the database using a web server and a database server, in order to perform environmental tasks. Considering that the environmental information is remotely monitored; some security mechanisms needs to be improved. A Firewall for protecting the resources of “Central System”, has been adopted by the authors according to the reference [80]. This control is over client users and “Local node Gateway” tasks. It was implemented using a user registering method, based on login and password to access into the system.
- (c)
- Local Node Gateway (LNG). All the required functionalities are in the “Local Node Gateway” with a single M2M GSM/GPRS device, as described in literature [81]. It has a processing and communication units, without external microprocessor and external embedded tools. It is designed in a modular, flexible, scalable and adaptable mode in order to provide sensing for analytical diagnosis, actuating for in situ remediation/conservation treatments, long range communication and broadcasting information to end-users. The advantages related to the power consumption, hardware platform size and cost, result three times better than other commercial systems. The proposed system it is already working at San Sebastian Church (Figure 4), Seville (Spain) since November 2008 [80]. The collected data are satisfactory to restorers and conservator scientists, who studied the experimental results to select the best strategies for the preservation of Cultural Heritage surfaces and objects. This working approach could be improved by combining the described technology with Internet services.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rittersma, Z.M. Review: Recent achievements in miniaturised humidity sensors—A review of transduction techniques. Sens. Actuators A Phys. 2002, 96, 196–210. [Google Scholar] [CrossRef]
- Chen, L.T.; Lee, C.Y.; Cheng, W.H. MEMS-based humidity sensor with integrated temperature compensation mechanism. Sens. Actuators A Phys. 2008, 147, 522–528. [Google Scholar] [CrossRef]
- Prosek, T.; Kouril, M.; Dubus, M.; Taube, M.; Hubert, V.; Scheffel, B.; Degres, Y.; Jouannic, M.; Thierry, D. Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors. Stud. Conserv. 2013, 58, 117–128. [Google Scholar] [CrossRef]
- Proietti, A.; Leccese, F.; Caciotta, M.; Morresi, F.; Santamaria, U.; Malomo, C. A New Dusts Sensor for Cultural Heritage Applications Based on Image Processing. Sensors 2014, 14, 9813–9832. [Google Scholar] [CrossRef] [PubMed]
- Albertano, P.; Bruno, L.; Bellezza, S. New strategy for the monitoring and control of cyanobacterial films on valuable lithic faces. Plant Biosyst. 2005, 139, 311–322. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, W.; O’Donoghu, M.B.; Tan, W. Fluorescent Nanoparticles for Multiplexed Bacteria Monitoring. Bioconj. Chem. 2007, 18, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the Indoor Environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef] [PubMed]
- Caggianese, G.; Neroni, P.; Gallo, L. Natural Interaction and Wearable Augmented Reality for the Enjoyment of the Cultural Heritage in Outdoor Conditions. In Proceedings of the First International Conference on Augmented and Virtual Reality (AVR 2014), Lecce, Italy, 17–20 September 2014; pp. 267–282. [Google Scholar]
- Mukhopadhyay, S.C. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Ray, P.P. Generic Internet of Things architecture for smart sports. In Proceedings of the 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 18–19 December 2015; pp. 405–410. [Google Scholar]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kularatna, N.; Sudantha, B.H. An Environmental Air Pollution Monitoring System Based on the IEEE 1451 Standard for Low Cost Requirements. IEEE Sens. J. 2008, 8, 415–422. [Google Scholar] [CrossRef]
- Chemical Sensors Market (By Type: Catalytic Bead, Electrochemical, Optical Sensor and Others; By End-User: Medical, Oil & Gas, Industrial, Automobile, Environment Monitoring and Others; By Geography: North America, Europe, Asia-Pacific and RoW) Global Scenario, Market Size, Outlook, Trend and Forecast, 2015–2024. Available online: https://www.variantmarketresearch.com/report-categories (accessed on 20 July 2018).
- Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G. Organic field-effect transistor sensors: A tutorial review. Chem. Soc. Rev. 2013, 42, 8612–8628. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Chen, W. Carbon Nanotube and Graphene-based Bioinspired Electrochemical Actuators. Adv. Mater. 2014, 26, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Bruno, J.J. Nanomaterials in Sensors. Nanomaterials 2013, 3, 572–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratoddi, I.; Bearzotti, A.; Venditti, I.; Cametti, C.; Russo, M.V. Role of nanostructured polymers on the improvement of electrical response-based relative humidity sensors. Sens. Actuators B Chem. 2016, 225, 96–108. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jadon, N.; Jain, R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. Trends Anal. Chem. 2016, 82, 55–67. [Google Scholar] [CrossRef]
- Malkiat, S.J.; Lewis, E.J. Understanding Nanomaterials, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781482253221. [Google Scholar]
- Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. Adv. Mater. 2008, 20, 2878–2887. [Google Scholar] [CrossRef] [Green Version]
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, C.M.; Eisele, D.M.; Rabe, J.P.; Liang, Y.; Feng, X.; Zhi, L.; Müllen, K.; Lyon, J.L.; Williams, R.; Vanden Bout, D.A.; et al. Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region. Small 2010, 6, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 7091–7095. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Microfluidic paper-based analytical devices (μPADs) are a new class of point-of-care diagnostic devices that are inexpensive, easy to use and designed specifically for use in developing countries. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Camuffo, D. Microclimate for Cultural Heritage Conservation, Restoration and Maintenance of Indoor and Outdoor Monuments; New York Second Updated and Expanded Edition; Elsevier: New York, NY, USA, 2013. [Google Scholar]
- Chuang, M.C.; Windmiller, J.R.; Santhosh, P.; Ramírez, G.V.; Galik, M.; Chou, T.Y.; Wang, J. Textile-based Electrochemical Sensing: Effect of Fabric Substrate and Detection of Nitroaromatic Explosives. Electroanalysis 2010, 22, 2511–2518. [Google Scholar] [CrossRef]
- Parrilla, M.; Cánovas, R.; Jeerapan, I.; Andrade, F.J.; Wang, J. A Textile-Based Stretchable Multi-Ion Potentiometric Sensor. Adv. Healthc. Mater. 2016, 5, 996–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, K.D.; Elias, A.L.; Chung, H.J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771–2805. [Google Scholar] [CrossRef]
- Miyamoto, A.; Lee, S.; Cooray, N.F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Inflammation-free, gas-permeable, light weight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Soonjae, P.; Jungwook, C.; Jongbaeg, K. Flexible, Transparent, Sensitive and Crosstalk-Free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric. Adv. Electron. Mater. 2018, 4, 1700427. [Google Scholar]
- Rao, C.N.R.; Müller, A.; Cheetham, A.K. The Chemistry of Nanomaterials: Synthesis, Properties and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-35273068622004. [Google Scholar]
- Hodes, G. Electrochemistry of Nanomaterials; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 9783527298365. [Google Scholar]
- Chen, T.; Dai, L. Carbon nanomaterials for high-performance supercapacitors. Mater. Today 2013, 16, 272–280. [Google Scholar] [CrossRef]
- Ariga, K.; Mori, T.; Hill, J.P. Mechanical control of nanomaterials and nanosystems. Adv. Mater. 2012, 24, 158–176. [Google Scholar] [CrossRef] [PubMed]
- Chelazzi, D.; Poggi, G.; Jaidar, Y.; Toccafondi, N.; Giorgi, R.; Baglioni, P. Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. J. Colloid Interface Sci. 2013, 392, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, Y.-C.; Nicolini, L.; Pasupathy, P.; Sacks, J.; Su, B.; Yang, R.; Sanchez, D.; Chang, Y.-F.; Wang, P.; et al. “Cut-and-Paste” Manufacture of Multiparametric Epidermal Sensor Systems. Adv. Mater. 2015, 27, 6423–6430. [Google Scholar] [CrossRef] [PubMed]
- Amendola, S.; Lodato, R.; Manzari, S.; Occhiuzzi, C.; Marrocco, G. RFID technology for IoT-based personal health care in smart spaces. IEEE Internet Things J. 2014, 1, 144–152. [Google Scholar] [CrossRef]
- Vuorinen, T.; Niittynen, J.; Kankkunen, T.; Kraft, T.M.; Mäntysalo, M. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Caldara, M.; Colleoni, C.; Guido, E.; Re, V.; Rosace, G. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens. Actuators B Chem. 2016, 222, 213–220. [Google Scholar] [CrossRef]
- De Santis, F.; Zona, D.; Bellagotti, R.; Vichi, F.; Allegrini, I. Ozone monitoring in a Mediterranean forest using diffusive and continuous sampling. Anal. Bioanal. Chem. 2004, 380, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Scharko, N.K.; Berke, A.E.; Raff, J.D. Release of Nitrous Acid and Nitrogen Dioxide from Nitrate Photolysis in Acidic Aqueous Solutions. Environ. Sci. Technol. 2014, 48, 11991–12001. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Lancaster, D.G.; Monro, T.M. Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing. Sensors 2018, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.F.H.; Antunes, P.; Pecoraro, E.; Lima, P.P.; Varum, H.; Carlos, L.D.; Ferreira, R.A.S.; André, P.S. Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating. Sensors 2012, 12, 8847–8860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, C.; Pattammattel, A. Introduction to Graphene Chemical and Biochemical Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128131824. [Google Scholar]
- Rodríguez Peralta, L.M.; Pestana Leão de Brito, L.M. An Integrating Platform for Environmental Monitoring in Museums Based on Wireless Sensor Networks; IARIA: Wilmington, DE, USA, 2010; Volume 3, pp. 114–124. [Google Scholar]
- Lee, C.-Y.; Lin, C.-H.; Lo, Y.-M. Fabrication of a Flexible Micro Temperature Sensor for Micro Reformer Applications. Sensors 2011, 11, 3706–3716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, L.J.; Bermudez, S.A.; Schrott, A.G.; Tsukada, M.; Dionisi-Vici, P.; Kargere, L.; Marianno, F.; Hamann, H.F.; López, V.; Leona, M. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System. Sensors 2017, 17, 1998. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Hu, G.; Howe, R.C.T.; De Luca, A.; Ali, S.Z.; Udrea, F.; Gardner, J.W.; Ray, S.K.; Guha, P.K.; Hasan, T. CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 2015, 5, 17374–17386. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714–2721. [Google Scholar] [CrossRef] [PubMed]
- Rathi, K.; Pal, K. Impact of Doping on GO: Fast Response-Recovery Humidity Sensor. ACS Omega 2017, 2, 842–851. [Google Scholar] [CrossRef]
- Varghese, O.K.; Grimes, A.C. Metal Oxide Nanoarchitectures for Environmental Sensing. J. Nanosci. Nanotechnol. 2003, 3, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity Sensors Principle, Mechanism and Fabrication Technologies: A Comprehensive Review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed]
- Grimes, C.A.; Mungle, C.S.; Zeng, K.; Jain, M.K.; Dreschel, W.R.; Paulose, M.; Ong, K.G. Wireless Magnetoelastic Resonance Sensors: A Critical Review. Sensors 2002, 2, 294–313. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Hoffman, A.S.; Stayton, P.S. Poly(N-isopropylacrylamide-co-propylacrylic acid) Copolymers that Respond Sharply to Temperature and pH. Biomacromolecules 2006, 7, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Jain, M.K.; Grimes, C.A. A wireless, remote query ammonia sensor. Sens. Actuators B Chem. 2001, 77, 614–619. [Google Scholar] [CrossRef]
- De Santis, F.; Dogeroglu, T.; Fino, A.; Menichelli, S.; Vazzana, C.; Allegrini, I. Laboratory development and field evaluation of a new diffusive sampler to collect nitrogen oxides in the ambient air. Anal. Bioanal. Chem. 2002, 373, 901–907. [Google Scholar] [CrossRef] [PubMed]
- De Santis, F.; Allegrini, I.; Fazio, M.C.; Pasella, D.; Piredda, R. Development of a passive sampling technique for the determination of nitrogen dioxide and sulphur dioxide in ambient. Anal. Chim. Acta 1997, 346, 127–134. [Google Scholar] [CrossRef]
- Hafkenscheid, T.; Fromage-Mariette, A.; Goelen, E.; Hangartner, M.; Pfeffer, U.; Plaisance, H.; De Santis, F.; Saunders, K.; Swaans, W.; Tang, Y.S.; et al. Review of the Application of Diffusive Samplers for the Measurement of Nitrogen Dioxide in Ambient Air in the European Union. 2009. Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/review-application-diffusive-samplers-measurement-nitrogen-dioxide-ambient-air-european (accessed on 24 July 2018).
- Costabile, F.; Bertoni, G.; De Santis, F.; Bellagotti, R.; Ciuchini, C.; Vichi, F.; Allegrini, I. Spatial Distribution of Urban Air Pollution in Lanzhou, China. Open Environ. Pollut. Toxicol. J. 2010, 2, 8–15. [Google Scholar] [CrossRef]
- De Santis, F.; Vazzana, C.; Menichelli, S.; Allegrini, I. The measurement of atmospheric pollutants by passive sampling at the Uffizi Gallery, Florence. Ann. Chim. 2003, 93, 45–53. [Google Scholar]
- Bertoni, G.; Ciuchini, C.; Di Palo, V.; Possanzini, M. Development of a Passive Sampler for Long-Term Measurements of Formaldehyde and Total Oxidants in Air. Chromatographia 2005, 61, 385–389. [Google Scholar] [CrossRef]
- Vichi, F.; Mašková, L.; Frattoni, M.; Imperiali, A.; Smolík, J. Simultaneous Measurement of Nitrous Acid, Nitric Acid and Nitrogen Dioxide by Means of a Novel Multipollutant Diffusive Sampler in Libraries and Archives. Herit. Sci. 2016, 4, 1–8. [Google Scholar] [CrossRef]
- McLagan, D.S.; Mazur, M.E.E.; Mitchell, C.P.J.; Wania, F. Passive air sampling of gaseous elemental mercury: A critical review. Atmos. Chem. Phys. 2016, 16, 3061–3076. [Google Scholar] [CrossRef]
- Jovašević-Stojanović, M.; Bartonova, A.; Topalović, D.; Lazović, I.; Pokrić, B.; Ristovski, Z. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ. Pollut. 2015, 206, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Paprotny, I.; Doering, F.; Solomon, P.A.; White, R.M.; Gundel, L.A. Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication and experimental results. Sens. Actuators A Phys. 2013, 201, 506–516. [Google Scholar] [CrossRef]
- White, A. A review of Some Current Research in Microelectromechanical Systems (MEMS) with Defense Applications. 2006. Available online: https://trove.nla.gov.au/version/49335595 (accessed on 20 July 2018).
- Chianese, E.; Riccio, A.; Duro, I.; Trifuoggi, M.; Iovino, P.; Capasso, S.; Barone, G. Measurements for indoor air quality assessment at the Capodimonte Museum in Naples (Italy). Int. J. Environ. Res. 2012, 6, 509–518. [Google Scholar]
- Daher, N.; Ruprecht, A.; Invernizzi, G.; De Marco, C.; Miller-Schulze, J.; Bae Heo, J.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Chemical Characterization and Source Apportionment of Fine and Coarse Particulate Matter Inside the Refectory of Santa Maria Delle Grazie Church, Home of Leonardo Da Vinci’s “Last Supper”. Environ. Sci. Technol. 2011, 45, 10344–10353. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Jia, W.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2015, 87, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 2013, 138, 7031–7038. [Google Scholar] [CrossRef] [PubMed]
- Ianniello, A.; Spataro, F.; Esposito, G.; Allegrini, I.; Hu, M.; Zhu, T. Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China). Atmos. Chem. Phys. 2011, 11, 10803–10822. [Google Scholar] [CrossRef]
- Duling, I.; Zimdars, D. Terahertz imaging: Revealing hidden defects. Nat. Photonics 2009, 3, 630–632. [Google Scholar] [CrossRef]
- Sciutto, G.; Zangheri, M.; Anfossi, L.; Guardigli, M.; Prati, S.; Mirasoli, M.; Di Nardo, F.; Baggiani, C.; Mazzeo, R.; Roda, A. Miniaturized Biosensors to Preserve and Monitor Cultural Heritage: From Medical to Conservation Diagnosis. Angew. Chem. 2018. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, M.C.; Borromeo, S.; Hernández-Tamames, J.A. Wireless Sensor Networks for Conservation and Monitoring Cultural Assets. IEEE Sens. J. 2011, 11, 1382–1389. [Google Scholar] [CrossRef]
- Gutierrez, J.; Villa-Medina, J.F.; Nieto-Garibay, A.; Porta-Gandara, M.A. Automated Irrigation System Using a Wireless Sensor Network and GPRS Module. IEEE Trans. Instrum. Meas. 2014, 63, 166–176. [Google Scholar] [CrossRef]
- International Telecommunication Union (ITU). Available online: https://www.itu.int/rec/T-REC/en (accessed on 20 July 2018).
- Sornalatha, K.; Kavitha, V.R. A Smart Museum using Internet of Things. Int. Res. J. Eng. Technol. 2016, 3, 750–754. [Google Scholar]
- Chianese, A.; Piccialli, F.; Valente, I. Smart environments and Cultural Heritage: A novel approach to create intelligent cultural spaces. J. Locat. Based Serv. 2015, 9, 209–234. [Google Scholar] [CrossRef]
- Sun, Y.; Song, H.; Jara, A.J.; Bie, R. Internet of Things and Big Data Analytics for Smart and Connected Communities. IEEE Access 2016, 4, 766–773. [Google Scholar] [CrossRef]
- Chianese, A.; Piccialli, F. A smart system to manage the context evolution in the Cultural Heritage domain. J. Comput. Electr. Eng. 2016, 55, 27–38. [Google Scholar] [CrossRef]
- Chianese, A.; Moscato, V.; Picariello, A.; Sperli, G. SNOPS: A Smart Environment for Cultural Heritage Applications. In Proceedings of the Twelfth International Workshop on Web Information and Data Management, Maui, HI, USA, 2 November 2012; pp. 49–56. [Google Scholar]
- Garau, C. From Territory to Smartphone: Smart Fruition of Cultural Heritage for Dynamic Tourism Development. Plan. Pract. Res. 2014, 29, 238–255. [Google Scholar] [CrossRef] [Green Version]
- Angelidou, M.; Karachaliou, E.; Angelidou, T.; Stylianidis, E. Cultural Heritage in smart city environments. In Proceedings of the 26th International CIPA Symposium on International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Ottawa, ON, Canada, 28 August–1 September 2017; Volume XLII-2/W5. [Google Scholar]
- Sheth, A.; Thirunarayan, K. Semantics Empowered Web 3.0: Managing Enterprise, Social, Sensor and Cloud-Based Data and Services for Advanced Applications; Morgan & Claypool Publishers: San Rafael, CA, USA, 2013; ISBN 9781608457168. [Google Scholar]
- Gelinas, L.; Pierce, R.; Winkler, S.; Cohen, I.G.; Lynch, H.F.; Bierer, B.E. Using Social Media as a Research Recruitment Tool, Ethical Issues and Recommendations. Am. J. Bioethics 2017, 17, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Sinclaire, J.K.; Vogus, C.E. Adoption of social networking sites: An exploratory adaptive structuration perspective for global organizations. Inf. Technol. Manag. 2011, 12, 293–314. [Google Scholar] [CrossRef]
- Cheung, C.; Lee, M.K.; Matthew, K.O. A theoretical model of intentional social action in online social networks. Decis. Support Syst. 2010, 49, 24–30. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Q.; Li, Z.; Liu, K.; Hu, F. Big Data and cloud computing: Innovation opportunities and challenges. Int. J. Digit. Earth 2017, 10, 13–53. [Google Scholar] [CrossRef]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, M.M.; Awais, A.; Anand, P.; Seungmin, R. Urban planning and building smart cities based on the Internet of Things using Big Data analytics. Comput. Netw. 2016, 101, 63–80. [Google Scholar] [CrossRef]
- Stojanov, G.; Kulakov, A. ICT Innovation 2016 Cognitive Functions and Next Generation ICT Systems; Springer: Berlin, Germany, 2017; ISBN 978-3-319-68854-1. [Google Scholar]
- Lee, S.K.; Bae, M.; Hwangnam, K. Future of IoT Networks: A Survey. Appl. Sci. 2017, 7, 1072. [Google Scholar] [CrossRef]
- Hui, T.K.L.R.; Sherratt, S.; Sánchez, D.D. Major requirements for building Smart Homes in Smart Cities based on Internet of Things technologies. Future Gener. Comput. Syst. 2017, 76, 358–369. [Google Scholar] [CrossRef]
- Minelli, M.; Chambers, M.; Dhiraj, A. Big Data, Big Analytics Emerging Business Intelligence and Analytical Trends for Today’s Businesses; Jhon Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 978-1-118-14760-3. [Google Scholar]
- Lanotte, R.; Merro, M. A semantic theory of the Internet of Things. Inf. Comput. 2018, 259, 72–101. [Google Scholar] [CrossRef] [Green Version]
- Gumbo, S.; Thinyane, H.; Thinyane, M.; Terzoli, A.; Hansen, S. Living Lab Methodology as an Approach to Innovation in ICT4D: The Siyakhula Living Lab Experience. In Proceedings of the IST-Africa 2012, Dar es Salaam, Tanzania, 9–11 May 2012; Cunningham, P., Cunningham, M., Eds.; II MC International Information Management Corporation: Dublin, Ireland, 2012. ISBN 978-1-905824-34-2. [Google Scholar]
- Presciutti, F.; Perlo, J.; Casanova, F.; Glöggler, S.; Miliani, C.; Blümich, B.; Brunetti, B.G.; Sgamellotti, A. Noninvasive nuclear magnetic resonance profiling of painting layers. Appl. Phys. Lett. 2008, 93, 33505–33508. [Google Scholar]
- Giakoumaki, A.; Melessanaki, K.; Anglos, D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science applications and prospects. Anal. Bioanal. Chem. 2007, 387, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1877–1884. [Google Scholar] [CrossRef]
- Brunetti, B.G.; Matteini, M.; Miliani, C.; Pezzati, L.; Pinna, D. MOLAB, a Mobile Laboratory for In Situ Non-Invasive Studies in Arts and Archaeology. In Lasers in the Conservation of Artworks; Springer: Berlin, Germany, 2005; Volume 116, pp. 453–460. [Google Scholar]
- Hammoudeh, M.; Arioua, M. Sensors and Actuators in Smart Cities. J. Sens. Actuator Netw. 2018, 7, 8. [Google Scholar] [CrossRef]
- Bessa, R.J. Chapter 10—Future Trends for Big Data Application in Power Systems. Big Data Appl. Power Syst. 2018, 10, 223–242. [Google Scholar]
- Singh, S.P.; Jaiswal, U.C. Machine Learning for Big Data: A New Perspective. Int. J. Appl. Eng. Res. 2018, 13, 2753–2762. [Google Scholar]
- Sun, Z.; Wang, P.P. A Mathematical Foundation of Big Data. New Math. Natl. Comput. 2017, 13, 83–99. [Google Scholar] [CrossRef]
Sensor Description | Challenges | Limitations and Drawbacks | Research Needs |
---|---|---|---|
Conventional unmovable technologies, located in research laboratories | To assemble portable technologies for in situ monitoring especially for un-movable and un-tangible CHs | Portable miniaturized sensors present the lowest sensitivity and the highest detection of limit if compared with those exhibited by the conventional tools, located in academic research laboratories | To improve the sensitivity of the miniaturized movable tools, by developing smart and highly efficient nanomaterials, applied for the sensor transducers modification |
New generation of tattoo sensors | To contact mode measuring, directly applied on CH’s surfaces and walls | Lowest sensitivity and un-compatible materials, applied for the tattoo tools fabrication, toward the chemical composition of the Art Work objects | To develop highly sensitive nanostructured materials, suitable for the transducers modification/assembly, extremely compatible with the Art Work support. |
Portable/Movable Sensors | Sensitive Nano Material Layers | Sensitivity Parameter | References |
---|---|---|---|
Miniaturized optical sensors humidity | Reduced Graphene Oxide | 0.22 dB/% RH | [49] |
abry-Perot resonator | |||
Miniaturized capacitive sensors humidity | Graphene Oxide (GO) | up to 37,800% | [54] |
Miniaturized pH-transducers | Acrylic acid/isooctylacrylate and 2826 MB ((Fe40Ni38Mo4B18) surface | 0.6%/pH | [59] |
Passive samplers (PAS) | Carbon paper filter, coated by 3.0 mM Na2CO3/0.3 mM NaHCO3, aqueous solution | 5 μg/m3 (NO2) | [62] |
NO2 | |||
SO2 | 10 μg/m3 (SO2) | ||
Particulate Matter and portable sensors | Filter-pack systems | 2 g/m3 | [70] |
Micro-fabricated mass-sensitive Film Bulk Acoustic Resonator (FBAR) |
Sensor Category Description | Indoor Environment, Selected for the Monitoring Field Campaigns | References |
---|---|---|
Crossbow mica2 motes, equipped with an MTS400CA data acquisition board and a mib520board (as the base station) | Museum called Fortaleza São Tiago, located in Madeira Island, (Portugal) | [50] |
MEMS based technology has been applied, where: the temperature transducer is based on a semiconductor diode element; the humidity probe is based on a capacitive element | The Cloisters, the medieval branch of the New York Metropolitan Museum of Art (USA) | [52] |
Analyst® (Marbaglass, Rome, Italy), patented by CNR gas sensing devices | Uffizi museum and gallery, Florence (Italy) | [65] |
Novel multi-pollutant diffusive sampler | Different libraries/archives, located in Switzerland in Bern, Geneva, in Czech Republic and also in Prague | [67] |
Dust Scan Scout Aerosol Monitor, that is a continuous dust analyzer | Museum of Capodimonte in Naples (Italy) | [72] |
24-h size-segregated PM cascade impactor (Sioutas PCIS, SKC Inc., Eighty Four, PA, USA) | Refectory in the city center of Milan (Italy), where the “Last Supper” painting, one of Leonardo da Vinci’s most famous artworks, is preserved | [73] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentini, F.; Calcaterra, A.; Antonaroli, S.; Talamo, M. Smart Portable Devices Suitable for Cultural Heritage: A Review. Sensors 2018, 18, 2434. https://doi.org/10.3390/s18082434
Valentini F, Calcaterra A, Antonaroli S, Talamo M. Smart Portable Devices Suitable for Cultural Heritage: A Review. Sensors. 2018; 18(8):2434. https://doi.org/10.3390/s18082434
Chicago/Turabian StyleValentini, Federica, Andrea Calcaterra, Simonetta Antonaroli, and Maurizio Talamo. 2018. "Smart Portable Devices Suitable for Cultural Heritage: A Review" Sensors 18, no. 8: 2434. https://doi.org/10.3390/s18082434
APA StyleValentini, F., Calcaterra, A., Antonaroli, S., & Talamo, M. (2018). Smart Portable Devices Suitable for Cultural Heritage: A Review. Sensors, 18(8), 2434. https://doi.org/10.3390/s18082434