Interaction of Lamb Wave Modes with Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode
Abstract
:1. Introduction
2. Formulations
2.1. Nonlinear Wave Equation
2.2. Second-Order Solution
2.2.1. Generation of Sum-Frequency, Difference-Frequency and Second Harmonic
2.2.2. Symmetry Properties and Zero-Frequency Generation
2.2.3. Zero-Frequency Generation for a Primary Wave of a Single Mode
2.2.4. Zero-Frequency Mode versus the Second Harmonic
3. Experiment
4. Simulation
5. Acoustic Nonlinearity Parameter
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, Y.; Giurgiutiu, V. Predictive simulation of nonlinear ultrasonics. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 16–19 April 2012; Volume 8348, p. 70. [Google Scholar]
- Miniaci, M.; Gliozzi, A.S.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N.M. Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Phys. Rev. Lett. 2017, 118, 214301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyraknolte, L.J.; Xu, J.; Haley, G.M. Elastic interface waves propagating in a fracture. Phys. Rev. Lett. 1992, 68, 3650. [Google Scholar] [CrossRef] [PubMed]
- Moussatov, A.; Gusev, V.; Castagnède, B. Self-induced hysteresis for nonlinear acoustic waves in cracked material. Phys. Rev. Lett. 2003, 90, 124301. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, T.J.; Johnson, P.A.; Guyer, R.A. Interaction Dynamics of Elastic Waves with a Complex Nonlinear Scatterer through the Use of a Time Reversal Mirror. Phys. Rev. Lett. 2007, 98, 104301. [Google Scholar] [CrossRef] [PubMed]
- Blum, T.E.; Wijk, K.V.; Snieder, R.; Willis, M.E. Laser Excitation of a Fracture Source for Elastic Waves. Phys. Rev. Lett. 2011, 107, 275501. [Google Scholar] [CrossRef] [PubMed]
- Pruell, C.; Kim, J.Y.; Qu, J.; Jacobs, L.J. A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate. NDT E Int. 2009, 42, 199–203. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, M.; Xuan, F.Z. Creep damage characterization using nonlinear ultrasonic guided wave method: A mesoscale model. J. Appl. Phys. 2014, 115, 044914–044914-11. [Google Scholar] [CrossRef]
- Matlack, K.H.; Kim, J.Y.; Jacobs, L.J.; Qu, J. Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 2011, 109, 2141. [Google Scholar] [CrossRef]
- Bermes, C.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 2007, 90, 2067–2073. [Google Scholar] [CrossRef]
- Korobov, A.I.; Izosimova, M.Y. Nonlinear lamb waves in a metal plate with defects. Acoust. Phys. 2006, 52, 589–597. [Google Scholar] [CrossRef]
- Pruell, C.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 2007, 91, 757–2073. [Google Scholar] [CrossRef]
- Pruell, C.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 2009, 18, 035003. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Liu, Y.; Hu, N.; Zhao, Y.; Ding, X.; Qin, S.; Zhang, J.; Zhang, J.; Liu, F. Simulations on Monitoring and Evaluation of Plasticity-Driven Material Damage Based on Second Harmonic of S₀ Mode Lamb Waves in Metallic Plates. Materials 2017, 10, 827. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.F.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 2010, 127, 2141–2152. [Google Scholar] [CrossRef] [PubMed]
- Ouarabi, M.A.; Boubenider, F.; Gliozzi, A.S.; Scalerandi, M. Nonlinear coda wave analysis of hysteretic elastic behavior in strongly scattering media. Phys. Rev. B 2016, 94, 134103. [Google Scholar] [CrossRef]
- Wan, X.; Tse, P.W.; Xu, G.H.; Tao, T.F.; Zhang, Q. Analytical and numerical studies of approximate phase velocity matching based nonlinear S0 mode Lamb waves for the detection of evenly distributed microstructural changes. Smart Mater. Struct. 2016, 25, 045023. [Google Scholar] [CrossRef]
- Wan, X.; Tse, P.W.; Xu, G.; Tao, T.; Liu, F.; Chen, X.; Zhang, Q. FEM Simulation of Nonlinear Lamb Waves for Detecting a Micro-Crack in a Metallic Plate, Engineering Asset Management-Systems. In Engineering Asset Management—Systems, Professional Practices and Certification; Springer: Berlin, Germany, 2015; pp. 1561–1569. [Google Scholar]
- Wan, X.; Zhang, Q.; Xu, G.; Tse, P.W. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks. Sensors 2014, 14, 8528–8546. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Su, Z.; Wang, Q.; Cheng, L.; Qing, X. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: Theory, simulation, and experimental validation. Ultrasonics 2014, 54, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chillara, V.K.; Lissenden, C.J. On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib. 2013, 332, 4517–4528. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, J.Y.; Jacobs, L.J.; Qu, J.; Li, Z. Experimental investigation of symmetry properties of second harmonic Lamb waves. J. Appl. Phys. 2012, 111, 231911. [Google Scholar] [CrossRef]
- Li, W.; Cho, Y.; Achenbach, J.D. Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater. Struct. 2012, 21, 85–93. [Google Scholar] [CrossRef]
- Metya, A.; Ghosh, M.; Parida, N.; Sagar, S.P. Higher harmonic analysis of ultrasonic signal for ageing behaviour study of C-250 grade maraging steel. NDT E Int. 2008, 41, 484–489. [Google Scholar] [CrossRef]
- Deng, M. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 2003, 94, 4152–4159. [Google Scholar] [CrossRef]
- Breazeale, M.A.; Thompson, D.O. Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 1963, 3, 77–78. [Google Scholar] [CrossRef]
- Deng, M. Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 1999, 85, 3051–3058. [Google Scholar] [CrossRef]
- Lima, W.J.N.D.; Hamilton, M.F. Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 2003, 265, 819–839. [Google Scholar] [CrossRef]
- Cantrell, J.H., Jr. Acoustic radiation-induced static strains in Solids. Phys. Rev. B Condens. Matter 1987, 35, 9780. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.N. Calculation of Lattice-Parameter Changes with Hydrostatic Pressure from Third-Order Elastic Constants. J. Acoust. Soc. Am. 1967, 41, 1093–1111. [Google Scholar] [CrossRef]
- Nagy, P.B.; Qu, J.; Jacobs, L.J. Finite-size effects on the quasistatic displacement pulse in a solid specimen with quadratic nonlinearity. J. Acoust. Soc. Am. 2013, 134, 1760. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Jacobs, L.J.; Nagy, P.B. On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L). J. Acoust. Soc. Am. 2011, 129, 3449. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Nagy, P.B.; Jacobs, L.J. Pulse propagation in an elastic medium with quadratic nonlinearity (L). J. Acoust. Soc. Am. 2012, 131, 1827. [Google Scholar] [CrossRef] [PubMed]
- Narasimha, K.T.; Kannan, E.; Balasubramaniam, K. Simplified experimental technique to extract the acoustic radiation induced static strain in solids. Appl. Phys. Lett. 2007, 91, 1112. [Google Scholar]
- Narasimha, K.T.; Kannan, E.; Balasubramaniam, K. Static displacement component and its significance in nonlinear ultrasonic measurements. AIP Conf. Proc. 2008, 975, 1282. [Google Scholar]
- Jacob, X.; Takatsu, R.; Barrière, C.; Royer, D. Experimental study of the acoustic radiation strain in solids. Appl. Phys. Lett. 2006, 88, 528. [Google Scholar] [CrossRef]
- Nagy, P.B.; Qu, J.; Jacobs, L.J. Reflection and diffraction corrections for nonlinear materials characterization by quasi-static pulse measurement. AIP Conf. Proc. 2014, 1581, 615. [Google Scholar]
- Sun, X.; Liu, X.; Hu, N. Interaction of guided waves in isotropic elastic plates with weak material nonlinearity: Sum-frequency, difference frequency, second harmonic and zero-frequency components. In Proceedings of the 9th International Symposium on NDT in Aerospace, Xiamen, China, 8–10 November 2017; Available online: https://www.ndt.net/article/aero2017/papers/NDT2017-044_Interaction_of_guided_waves_in_isotropic_elastic_plates_with_weak_material_nonlinearity.pdf (accessed on 28 July 2018).
- Wan, X.; Tse, P.W.; Zhang, X.; Xu, G.; Zhang, Q.; Mao, Q.; Dong, M.; Wang, C.; Ma, H.W. Numerical study on static component generation from the primary Lamb waves propagating in a plate with nonlinearity. Smart Mater. Struct. 2018, 27, 4. [Google Scholar] [CrossRef]
- Srivastava, A.; Scalea, F.L.D. On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib. 2009, 323, 932–943. [Google Scholar] [CrossRef]
- Krishna Chillara, V.; Lissenden, C.J. Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: Higher harmonic generation. J. Appl. Phys. 2012, 111, 124909. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 3rd ed.; Pergamon Press: New York, NY, USA, 1986. [Google Scholar]
- Auld, B.A. Acoustic Fields and Waves in Solids; Ripol Classic: Moscow, Russia, 1990. [Google Scholar]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media, 2nd ed.; Cambridge University Press: New York, NY, USA, 2014; pp. 80–83. ISBN 978-1-107-04895-9. [Google Scholar]
- Chillara, V.K.; Lissenden, C.J. Nonlinear guided waves in plates: A numerical perspective. Ultrasonics 2014, 54, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
ρ (kg/m3) | λ (GPa) | μ (GPa) | |||
---|---|---|---|---|---|
2704 | 70.3 | 26.96 | −4160 | −1310 | −1505 |
ρ (kg/m3) | λ (GPa) | μ (GPa) | |||
---|---|---|---|---|---|
2704 | 70.3 | 26.96 | −41600 | −13100 | −15050 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Ding, X.; Li, F.; Zhou, S.; Liu, Y.; Hu, N.; Su, Z.; Zhao, Y.; Zhang, J.; Deng, M. Interaction of Lamb Wave Modes with Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode. Sensors 2018, 18, 2451. https://doi.org/10.3390/s18082451
Sun X, Ding X, Li F, Zhou S, Liu Y, Hu N, Su Z, Zhao Y, Zhang J, Deng M. Interaction of Lamb Wave Modes with Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode. Sensors. 2018; 18(8):2451. https://doi.org/10.3390/s18082451
Chicago/Turabian StyleSun, Xiaoqiang, Xiangyan Ding, Feilong Li, Shijie Zhou, Yaolu Liu, Ning Hu, Zhongqing Su, Youxuan Zhao, Jun Zhang, and Mingxi Deng. 2018. "Interaction of Lamb Wave Modes with Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode" Sensors 18, no. 8: 2451. https://doi.org/10.3390/s18082451
APA StyleSun, X., Ding, X., Li, F., Zhou, S., Liu, Y., Hu, N., Su, Z., Zhao, Y., Zhang, J., & Deng, M. (2018). Interaction of Lamb Wave Modes with Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode. Sensors, 18(8), 2451. https://doi.org/10.3390/s18082451